The structure of Sobolev extension operators

被引:6
作者
Fefferman, Charles [1 ]
Israel, Arie [2 ]
Luli, Garving K. [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Whitney extension problem; linear operators; Sobolev spaces; LINEAR-OPERATORS; C-M;
D O I
10.4171/RMI/787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-m,L-p (R-n) denote the Sobolev space of functions whose m-th derivatives lie in L-p (R-n), and assume that p > n. For E subset of R-n, denote by L-m,L-p (E) the space of restrictions to E of functions F is an element of L-m,L-p (R-n). It is known that there exist bounded linear maps T : L-m,L-p (E) -> L-m,L-p (R-n) such that T f = f on E for any f is an element of L-m,L-p (E). We show that T cannot have a simple form called "bounded depth".
引用
收藏
页码:419 / 429
页数:11
相关论文
共 8 条
[1]   Cm extension by linear operators [J].
Fefferman, Charles .
ANNALS OF MATHEMATICS, 2007, 166 (03) :779-835
[2]  
Fefferman C, 2007, REV MAT IBEROAM, V23, P269
[3]  
Fefferman C, 2009, REV MAT IBEROAM, V25, P1
[4]  
Fefferman CL, 2014, J AM MATH SOC, V27, P69
[5]   A bounded linear extension operator for L2,p(R2) [J].
Israel, Arie .
ANNALS OF MATHEMATICS, 2013, 178 (01) :183-230
[6]   Cm,ω extension by bounded-depth linear operators [J].
Luli, Garving K. .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :1927-2021
[8]  
TRIEBEL H, 1995, INTERPOLATION THEORY