Analyzing Task-Dependent Brain Network Changes by Whole-Brain Psychophysiological Interactions: A Comparison to Conventional Analysis

被引:40
|
作者
Gerchen, Martin Fungisai [1 ,2 ]
Bernal-Casas, David [1 ,2 ]
Kirsch, Peter [1 ,2 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, Dept Clin Psychol, Cent Inst Mental Hlth, D-68059 Mannheim, Germany
[2] Bernstein Ctr Computat Neurosci Heidelberg Mannhe, Mannheim, Germany
关键词
functional magnetic resonance imaging; connectivity; connectome; episodic memory; recall; FUNCTIONAL CONNECTIVITY; PARCELLATION; FMRI;
D O I
10.1002/hbm.22532
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
While fMRI activation studies contrasting task conditions regularly assess the whole brain, this is usually not true for studies analyzing task-dependent brain connectivity changes by psychophysiological interactions (PPI). Here we combine standard PPI (sPPI) and generalized PPI (gPPI) with a priori brain parcellation by spatially constrained normalized cut spectral clustering (NCUT) to analyze task-dependent connectivity changes in a whole brain manner, and compare the results to multiseed conventional PPI analyses over all activation peaks in an episodic memory recall task. We show that, depending on the chosen parcellation frame, the whole-brain PPI approach is able to detect a large amount of the information that is detected by the conventional approach. Over and above, whole-brain PPI allows identification of several additional task-modulated connections, particularly from seed regions without significant activation differences between conditions. Hum Brain Mapp 35:5071-5082, 2014. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:5071 / 5082
页数:12
相关论文
共 26 条
  • [1] Psychophysiological whole-brain network clustering based on connectivity dynamics analysis in naturalistic conditions
    Raz, Gal
    Shpigelman, Lavi
    Jacob, Yael
    Gonen, Tal
    Benjamini, Yoav
    Hendler, Talma
    HUMAN BRAIN MAPPING, 2016, 37 (12) : 4654 - 4672
  • [2] A mixed-modeling framework for analyzing multitask whole-brain network data
    Simpson, Sean L.
    Bahrami, Mohsen
    Laurienti, Paul J.
    NETWORK NEUROSCIENCE, 2019, 3 (02): : 307 - 324
  • [3] A mixed-modeling framework for whole-brain dynamic network analysis
    Bahrami, Mohsen
    Laurienti, Paul J.
    Shappell, Heather M.
    Dagenbach, Dale
    Simpson, Sean L.
    NETWORK NEUROSCIENCE, 2022, 6 (02) : 591 - 613
  • [4] A two-part mixed-effects modeling framework for analyzing whole-brain network data
    Simpson, Sean L.
    Laurienti, Paul J.
    NEUROIMAGE, 2015, 113 : 310 - 319
  • [5] Synchronization dependent on spatial structures of a mesoscopic whole-brain network
    Choi, Hannah
    Mihalas, Stefan
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
  • [6] Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions
    Di, Xin
    Huang, Jia
    Biswal, Bharat B.
    BRAIN STRUCTURE & FUNCTION, 2017, 222 (01): : 619 - 634
  • [7] Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions
    Xin Di
    Jia Huang
    Bharat B. Biswal
    Brain Structure and Function, 2017, 222 : 619 - 634
  • [8] Aberrant Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis
    Kambeitz, Joseph
    Kambeitz-Ilankovic, Lana
    Cabral, Carlos
    Dwyer, Dominic B.
    Calhoun, Vince D.
    van den Heuvel, Martijn P.
    Falkai, Peter
    Koutsouleris, Nikolaos
    Malchow, Berend
    SCHIZOPHRENIA BULLETIN, 2016, 42 : S13 - S21
  • [9] Altered task-modulated functional connectivity during emotional face processing in euthymic bipolar patients: A whole-brain psychophysiological interaction study
    Li, Linling
    Han, Xue
    Ji, Erni
    Tao, Xiangrong
    Shen, Manjun
    Zhu, Dongjian
    Zhang, Li
    Li, Lingjiang
    Yang, Haichen
    Zhang, Zhiguo
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 301 : 162 - 171
  • [10] Whole-Brain Connectomic Analysis of 145 Resting State Scans Reveals Network Neurosignatures of Schizophrenia
    Sripada, Chandra
    Kessler, Daniel
    Watanabe, Takanori
    Welsh, Robert
    Fang, Yu
    Angstadt, Michael
    Taylor, Stephan F.
    Scott, Clayton
    BIOLOGICAL PSYCHIATRY, 2013, 73 (09) : 37S - 38S