Engineering FeCo alloy@N-doped carbon layers by directly pyrolyzing Prussian blue analogue: new peroxidase mimetic for chemiluminescence glucose biosensing

被引:55
作者
Lu, Yuwan [1 ]
Zhang, Xiaodan [1 ]
Mao, Xuanxiang [1 ]
Huang, Yuming [1 ]
机构
[1] Southwest Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Luminescence & Real Time Analyt Chem, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; OXYGEN REDUCTION; LUMINOL CHEMILUMINESCENCE; HYDROGEN-PEROXIDE; GOLD NANOPARTICLE; COBALT SULFIDE; EFFICIENT; CATALYSTS; NANOCUBES; GRAPHENE;
D O I
10.1039/c9tb00797k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Herein, we report the synthesis of FeCo alloy@N-doped carbon layers (FeCo@NC), a new peroxidase mimetic, by directly pyrolyzing the Fe-III-Co Prussian blue analogue (Fe-III-Co PBA). The FeCo@NC composite showed excellent peroxidase-like activity due to its highly active FeCo alloy, M-N species (Co-N and Fe-N) and N-doped carbon layers with hierarchical pore nanostructures, which were formed via simple heat treatment of Fe-III-Co PBA without additional C and N sources. In particular, the obtained FeCo@NC hybrid presented high CL activity with more than 85-fold enhancement in the CL emission of the H2O2-luminol system, and long-term stability compared with FeCo alloy nanoparticles. The CL response showed a linear range of 0.01-40 mu M H2O2 with a limit of detection of 2.5 nM. When coupled with glucose oxidase, we developed a new CL sensing method for the detection of glucose in the linear range of 10 nM to 10 mu M with a detection limit of 8.5 nM. This FeCo@NC-based glucose biosensor displayed rapidity, high precision and good reproducibility when utilized to analyze real biological samples. Expectedly, FeCo@NC, as a new peroxidase mimetic, exhibits great potential for monitoring glucose levels in clinical diagnosis.
引用
收藏
页码:4661 / 4668
页数:8
相关论文
共 56 条
[1]   SYNTHESIS AND PROPERTIES OF 2 SERIES OF HEAVY METAL HEXACYANOFERRATES [J].
AYERS, JB ;
WAGGONER, WH .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1971, 33 (03) :721-&
[2]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium [J].
Cai, Pingwei ;
Huang, Junheng ;
Chen, Junxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (17) :4858-4861
[5]   In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries [J].
Cai, Pingwei ;
Hong, Yuan ;
Ci, Suqin ;
Wen, Zhenhai .
NANOSCALE, 2016, 8 (48) :20048-20055
[6]   FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery [J].
Cai, Pingwei ;
Ci, Suqin ;
Zhang, Erhuan ;
Shao, Ping ;
Cao, Changsheng ;
Wen, Zhenhai .
ELECTROCHIMICA ACTA, 2016, 220 :354-362
[7]   Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction [J].
Cao, Linmin ;
Lin, Zhipeng ;
Huang, Jilin ;
Yu, Xiang ;
Wu, Xiaoxian ;
Zhang, Bodong ;
Zhan, Yunfeng ;
Xie, Fangyan ;
Zhang, Weihong ;
Chen, Jian ;
Xie, Weiguang ;
Mai, Wenjie ;
Meng, Hui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) :876-885
[8]   Detection of Glucose Based on Bimetallic PtCu Nanochains Modified Electrodes [J].
Cao, Xia ;
Wang, Ning ;
Jia, Shu ;
Shao, Yuanhua .
ANALYTICAL CHEMISTRY, 2013, 85 (10) :5040-5046
[9]   A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol-H2O2-gold nanoparticle chemiluminescence detection system [J].
Chaichi, Mohammad Javad ;
Ehsani, Mahjoobeh .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 223 :713-722
[10]   Graphene materials-based chemiluminescence for sensing [J].
Chen, Hui ;
Gao, Qiang ;
Li, Jianzhang ;
Lin, Jin-Ming .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2016, 27 :54-71