A PRECONDITIONED FAST FINITE DIFFERENCE METHOD FOR SPACE-TIME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

被引:39
作者
Fu, Hongfei [1 ]
Wang, Hong [2 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
anomalous diffusion; finite difference method; space-time discretization; space-time fractional diffusion equation; Krylov subspace method; ELEMENT-METHOD; NUMERICAL ALGORITHMS; DIFFUSION-EQUATIONS; ADVECTION; APPROXIMATIONS; DISPERSION; CONVERGENCE; STABILITY; CALCULUS;
D O I
10.1515/fca-2017-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a fast space-time finite difference method for space-time fractional diffusion equations by fully utilizing the mathematical structure of the scheme. A circulant block preconditioner is proposed to further reduce the computational costs. The method has optimal-order memory requirement and approximately linear computational complexity. The method is not lossy, as no compression of the underlying numerical scheme has been employed. Consequently, the method retains the stability, accuracy, and, in particular, the conservation property of the underlying numerical scheme. Numerical experiments are presented to show the efficiency and capacity of long time modelling of the new method.
引用
收藏
页码:88 / 116
页数:29
相关论文
共 57 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[6]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[7]   AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS [J].
Burrage, Kevin ;
Hale, Nicholas ;
Kay, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2145-A2172
[8]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[9]  
Chan T. F., 1994, Numer. Algorithms, V6, P89, DOI [10.1007/BF02149764, DOI 10.1007/BF02149764]
[10]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771