GRADIENT ESTIMATES FOR THE COMMUTATOR WITH FRACTIONAL DIFFERENTIATION FOR SECOND ORDER ELLIPTIC PERATORS

被引:1
作者
Tao, Wenyu [1 ]
Chen, Yanping [1 ]
Li, Jili [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Dept Appl Math, Beijing 100083, Peoples R China
关键词
commutator; fractional differentiation; elliptic operators; Sobolev space; SQUARE-ROOT PROBLEM; OPERATORS;
D O I
10.1007/s10473-019-0505-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = -div(A del) be a second order divergence form elliptic operator, where A is an accretive, n x n matrix with bounded measurable complex coefficients on R-n. Let L-alpha/2 (0 < alpha < 1) denotes the fractional differential operator associated with L and (-Delta)(alpha/2) b is an element of L-n/alpha(R-n). In this article, we prove that the commutator [b, L-alpha/2] is bounded from the homogenous Sobolev space (L) over dot(alpha)(2)(R-n) to L-2(R-n).
引用
收藏
页码:1255 / 1264
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1996, P CMA
[2]  
[Anonymous], 2002, ANAL MATH
[3]  
[Anonymous], 1998, ASTERISQUE
[4]  
[Anonymous], 1982, COLL FRANCE SEMINAR
[5]  
[Anonymous], 2004, Classical and modern Fourier analysis
[6]   On LP estimates for square roots of second order elliptic operators on Rn [J].
Auscher, P .
PUBLICACIONS MATEMATIQUES, 2004, 48 (01) :159-186
[7]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[8]  
Auscher P, 2007, MEM AM MATH SOC, V186, pXI
[9]   The Kato square root problem for higher order elliptic operators and systems on Rn [J].
Auscher, Pascal ;
Hofmann, Steve ;
McIntosh, Alan ;
Tchamitchian, Philippe .
JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) :361-385
[10]  
Calderon A P, 1978, P INT C MATH HELS, P86