Oscillatory behavior of spatial soliton in a gradient refractive index waveguide with nonlocal nonlinearity

被引:21
作者
Dong, L. W. [1 ]
Wang, H. [1 ]
机构
[1] Zhejiang Normal Univ, Inst Informat Opt, Jinhua 321004, Peoples R China
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2006年 / 84卷 / 03期
关键词
D O I
10.1007/s00340-006-2289-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Oscillatory behavior of spatial solitons in a transverse parabolic gradient refractive index distribution (GRIN) waveguide with both local and nonlocal nonlinearity is investigated. Dynamics of such solitons are analyzed by the effective-particle approach method. For weak nonlocal nonlinearity, solitons oscillate in transverse direction periodically during propagation. The normalized width and maximum of refractive index variation of the waveguide play a key role in determining the oscillating period while the position of soliton oscillatory center is slightly influenced by the nonlocal nonlinearity. Stronger nonlocal nonlinearity leads to instability of the oscillatory solitons. Furthermore, the dynamics of the solitons are simulated numerically and good agreements are obtained between the analysis and numerical results. This behavior may be used in all-optical routers, switches etc.
引用
收藏
页码:465 / 469
页数:5
相关论文
共 25 条
[1]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .2. MULTIPLE-PARTICLE AND MULTIPLE-INTERFACE EXTENSIONS [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1828-1840
[2]   THEORY OF LIGHT-BEAM PROPAGATION AT NONLINEAR INTERFACES .1. EQUIVALENT-PARTICLE THEORY FOR A SINGLE INTERFACE [J].
ACEVES, AB ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1989, 39 (04) :1809-1827
[3]   Self-bending of cnoidal waves in photorefractive medium with drift and diffusion nonlinearity [J].
Aleshkevich, V ;
Vysloukh, V ;
Kartashov, Y .
OPTICS COMMUNICATIONS, 2000, 174 (1-4) :277-284
[4]   Self-bending of the coupled spatial soliton pairs in a photorefractive medium with drift and diffusion nonlinearity [J].
Aleshkevich, V ;
Kartashov, Y ;
Vysloukh, V .
PHYSICAL REVIEW E, 2001, 63 (01)
[5]   Optical vortex solitons in parametric wave mixing [J].
Alexander, TJ ;
Kivshar, YS ;
Buryak, AV ;
Sammut, RA .
PHYSICAL REVIEW E, 2000, 61 (02) :2042-2049
[6]   Internal modes of localized optical vortex soliton in a cubic-quintic nonlinear medium [J].
Dong, LW ;
Ye, FW ;
Wang, JD ;
Cai, T ;
Li, YP .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (3-4) :219-226
[7]   Swing effect of spatial soliton [J].
Garzia, F ;
Sibilia, C ;
Bertolotti, M .
OPTICS COMMUNICATIONS, 1997, 139 (4-6) :193-198
[8]   Packing, unpacking, and steering of multicolor solitons in optical lattices [J].
Kartashov, YV ;
Vysloukh, VA ;
Torner, L .
OPTICS LETTERS, 2004, 29 (12) :1399-1401
[9]   Soliton eigenvalue control in optical lattices [J].
Kartashov, YV ;
Crasovan, LC ;
Zelenina, AS ;
Vysloukh, VA ;
Sanpera, A ;
Lewenstein, M ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :143902-1
[10]   Tunable soliton self-bending in optical lattices with nonlocal nonlinearity [J].
Kartashov, YV ;
Vysloukh, VA ;
Torner, L .
PHYSICAL REVIEW LETTERS, 2004, 93 (15) :153903-1