Gelfand type quasilinear elliptic problems with quadratic gradient terms

被引:8
|
作者
Arcoya, David [1 ]
Carmona, Jose [2 ]
Martinez-Aparicio, Pedro J. [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Almeria, Dept Matemat, La Canada De San Urbano 04120, Almeria, Spain
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30202, Spain
关键词
Gelfand problem; Quasilinear elliptic equations; Quadratic gradient; Stability condition; Extremal solutions; DIRICHLET PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.anihpc.2013.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for 0 < m(1) <= m(x) <= m(2) and positive parameters lambda and p, we study the existence of positive solution for the quasilinear model problem { -Delta u + m(x) vertical bar del u vertical bar(2)/1 + u = lambda(1 + u)(P) in Omega, u = 0 on partial derivative Omega. We prove that the maximal set of lambda for which the problem has at least one positive solution is an interval (0, lambda*], with lambda* > 0, and there exists a minimal regular positive solution for every lambda is an element of (0, lambda*). We also prove, under suitable conditions depending on the dimension N and the parameters p, m(1), m(2), that for lambda = lambda* there exists a minimal regular positive solution. Moreover we characterize minimal solutions as those solutions satisfying a stability condition in the case m(1) = m(2). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 50 条
  • [21] A weak solution to quasilinear elliptic problems with perturbed gradient
    Elhoussine Azroul
    Farah Balaadich
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 151 - 166
  • [22] A Variational Approach to Quasilinear Elliptic Problems with Gradient Dependence
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (02):
  • [23] Gradient regularity for quasilinear elliptic Dirichlet problems in the plane
    Alberico, Angela
    Cianchi, Andrea
    Sbordone, Carlo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 145 : 143 - 161
  • [24] EXISTENCE OF SOLUTIONS FOR QUASILINEAR DIRICHLET PROBLEMS WITH GRADIENT TERMS
    Filippucci, Roberta
    Lini, Chiara
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (02): : 267 - 286
  • [25] EXISTENCE AND BOUNDARY BEHAVIOR OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC PROBLEMS WITH GRADIENT TERMS
    Liu, Chunlian
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (03): : 281 - 295
  • [26] QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENTS AND HARDY TERMS IN RN
    Kang, Dongsheng
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 175 - 193
  • [27] Multiple solutions for perturbed quasilinear elliptic problems with oscillatory terms
    Guo, Zuji
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 149 - 157
  • [28] Quasilinear elliptic problems with singular and homogeneous lower order terms
    Carmona, Jose
    Leonori, Tommaso
    Lopez-Martinez, Salvador
    Martinez-Aparicio, Pedro J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 : 105 - 130
  • [29] The existence of solutions for quasilinear elliptic problems with multiple Hardy terms
    Li, Yuanyuan
    APPLIED MATHEMATICS LETTERS, 2018, 81 : 7 - 13
  • [30] Quasilinear elliptic problems with combined critical Sobolev–Hardy terms
    Yuanyuan Li
    Bernhard Ruf
    Qianqiao Guo
    Pengcheng Niu
    Annali di Matematica Pura ed Applicata, 2013, 192 : 93 - 113