Gelfand type quasilinear elliptic problems with quadratic gradient terms

被引:8
|
作者
Arcoya, David [1 ]
Carmona, Jose [2 ]
Martinez-Aparicio, Pedro J. [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Almeria, Dept Matemat, La Canada De San Urbano 04120, Almeria, Spain
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30202, Spain
关键词
Gelfand problem; Quasilinear elliptic equations; Quadratic gradient; Stability condition; Extremal solutions; DIRICHLET PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.anihpc.2013.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for 0 < m(1) <= m(x) <= m(2) and positive parameters lambda and p, we study the existence of positive solution for the quasilinear model problem { -Delta u + m(x) vertical bar del u vertical bar(2)/1 + u = lambda(1 + u)(P) in Omega, u = 0 on partial derivative Omega. We prove that the maximal set of lambda for which the problem has at least one positive solution is an interval (0, lambda*], with lambda* > 0, and there exists a minimal regular positive solution for every lambda is an element of (0, lambda*). We also prove, under suitable conditions depending on the dimension N and the parameters p, m(1), m(2), that for lambda = lambda* there exists a minimal regular positive solution. Moreover we characterize minimal solutions as those solutions satisfying a stability condition in the case m(1) = m(2). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 50 条
  • [1] Radial solutions for a Gelfand type quasilinear elliptic problem with quadratic gradient terms
    Arcoya, David
    Carmona, Jose
    Martinez-Aparicio, Pedro J.
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 21 - 30
  • [2] Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources
    Boccardo, Lucio
    Orsina, Luigi
    Porzio, Maria Michaela
    ADVANCES IN CALCULUS OF VARIATIONS, 2011, 4 (04) : 397 - 419
  • [3] Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms
    Liu, Chunlian
    Yang, Zuodong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4380 - 4391
  • [4] Quasilinear elliptic problems with multivalued terms
    Nikolaos Halidias
    Nikolaos S. Papageorgiou
    Czechoslovak Mathematical Journal, 2000, 50 : 803 - 823
  • [5] Quasilinear elliptic problems with multivalued terms
    Halidias, N
    Papageorgiou, NS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (04) : 803 - 823
  • [6] Gelfand type problem for singular quadratic quasilinear equations
    Molino, Alexis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (05):
  • [7] Boundary blow-up quasilinear elliptic problems with nonlinear gradient terms
    Liu, Chunlian
    Yang, Zuodong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (06) : 687 - 704
  • [8] Boundary behaviour of explosive solution to quasilinear elliptic problems with nonlinear gradient terms
    Huang, Shuibo
    Tian, Qiaoyu
    APPLICABLE ANALYSIS, 2011, 90 (09) : 1391 - 1404
  • [9] Gelfand type problem for singular quadratic quasilinear equations
    Alexis Molino
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [10] QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR QUADRATIC GROWTH TERMS
    Boccardo, Lucio
    Leonori, Tommaso
    Orsina, Luigi
    Petitta, Francesco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (04) : 607 - 642