Weight optimisation of coreless axial-flux permanent magnet machines

被引:12
作者
Subotic, Ivan [1 ,2 ]
Gammeter, Christoph [1 ,3 ]
Tuysuz, Arda [1 ]
Kolar, Johann W. [1 ]
机构
[1] Swiss Fed Inst Technol, Power Elect Syst Lab, CH-8092 Zurich, Switzerland
[2] Liverpool John Moores Univ, Dept Elect & Elect Engn, Liverpool L3 3AF, Merseyside, England
[3] Celeroton AG, CH-8604 Volketswil, Switzerland
关键词
permanent magnet machines; torque; magnetic flux; Pareto optimisation; optimisation methodology; weight optimisation; coreless axial-flux permanent magnet machines; torque-to-weight ratios; permanent magnets; comprehensive multifunctional optimisation procedure; machine design space; performance space; power-to-weight ratio; structural parts; modern commercial machines; resulting machine; claimed limits; power-to-weight ratios; electro-magnetic aspect; thermal aspect; structural aspect; Pareto front; power; 6; 4; kW; DESIGN; ROTOR;
D O I
10.1049/iet-epa.2018.5228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study explores the upper limits in power-to-weight and torque-to-weight ratios of coreless axial-flux machines with permanent magnets. Moreover, it provides a comprehensive multifunctional optimisation procedure that is utilised for obtaining these limits. The procedure encompasses analytical analysis of electro-magnetic, thermal and structural (mechanical) aspects of axial-flux machines. Obtaining global minima is ensured by considering the whole machine design space, and mapping it into the performance space, where a Pareto front can be easily identified. From it, an optimal motor/generator for airborne wind turbines is identified. The design has a power-to-weight ratio of 6.4 kW/kg (19 Nm/kg at 3200 rpm) including structural (purely mechanical) parts, at an efficiency of 95%. This is a significantly higher ratio than the one in modern commercial machines or designs reported in the literature. Therefore, the resulting machine is manufactured and experimentally tested in order to verify the claimed limits and the optimisation methodology.
引用
收藏
页码:594 / 603
页数:10
相关论文
共 32 条
[1]  
Adhikari J., 2013, P 5 INT C POW EL SYS
[2]  
Baker J.L., 2017, P IEEE INT EL MACH D
[3]   Recent Advances in Axial-Flux Permanent-Magnet Machine Technology [J].
Capponi, Fabio Giulii ;
De Donato, Giulio ;
Caricchi, Federico .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2012, 48 (06) :2190-2205
[4]   The Ventilation Effect on Stator Convective Heat Transfer of an Axial-Flux Permanent-Magnet Machine [J].
Chong, Yew Chuan ;
Subiabre, Estanislao J. P. Echenique ;
Mueller, Markus A. ;
Chick, John ;
Staton, David A. ;
McDonald, Alasdair S. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (08) :4392-4403
[5]   Design Optimization of Direct-Coupled Ironless Axial Flux Permanent Magnet Synchronous Wind Generator With Low Cost and High Annual Energy Yield [J].
Daghigh, Ali ;
Javadi, Hamid ;
Torkaman, Hossein .
IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (09)
[6]   Demagnetization Fault Detection in Axial Flux PM Machines by Using Sensing Coils and an Analytical Model [J].
De Bisschop, Jan ;
Vansompel, Hendrik ;
Sergeant, Peter ;
Dupre, Luc .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (06)
[7]   Effects of Manufacturing Imperfections in Concentrated Coil Axial Flux PM Machines: Evaluation and Tests [J].
Di Gerlando, Antonino ;
Foglia, Giovanni Maria ;
Iacchetti, Matteo Felice ;
Perini, Roberto .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (09) :5012-5024
[8]   Fan Performance Analysis for Rotor Cooling of Axial Flux Permanent Magnet Machines [J].
Fawzal, Ahmad Syahid ;
Cirstea, Remus M. ;
Gyftakis, Konstantinos N. ;
Woolmer, Tim J. ;
Dickison, Mike ;
Blundell, Mike .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (04) :3295-3304
[9]  
Gammeter C., 2014, P 40 IEEE IND EL SOC
[10]  
Gieras J., 2008, AXIAL FLUX PERMANENT