Weighted error estimates of the continuous interior penalty method for singularly perturbed problems

被引:22
作者
Burman, Erik [2 ]
Guzman, Johnny [1 ]
Leykekhman, Dmitriy [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
singularly perturbed; convection-diffusion; local error analysis; continuous interior penalty method; FINITE-ELEMENT METHODS; ADVECTION;
D O I
10.1093/imanum/drn001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyse local properties of the continuous interior penalty (CIP) method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows thats locally, the CIP method is comparable to the streamline-diffusion or the discontinuous Galerkin methods.
引用
收藏
页码:284 / 314
页数:31
相关论文
共 17 条
[1]  
Becker R, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P123
[2]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033
[3]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[4]   Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations [J].
Burman, Erik ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1119-1140
[5]   Continuous interior penalty finite element method for Oseen's equations [J].
Burman, Erik ;
Fernandez, Miguel A. ;
Hansbo, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1248-1274
[6]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[7]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[8]  
Codina R., 2002, Computing and Visualization in Science, V4, P167, DOI 10.1007/s007910100068
[9]  
Douglas T., 1976, Methods in Applied Sciences, Lecture Notes inPhysics, V58, P207
[10]  
Grisvard P., 1992, Singularities in Boundary Value Problems. Research Notes in Applied Mathematics