Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity

被引:75
作者
Jisha, Chandroth P. [1 ]
Alberucci, Alessandro [2 ]
Brazhnyi, Valeriy A. [1 ]
Assanto, Gaetano [2 ]
机构
[1] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
[2] Nonlinear Opt & OptoElect Lab NooEL, I-00146 Rome, Italy
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
SPATIAL SOLITONS; OSCILLATORY INSTABILITIES; PROPAGATION; STABILITY; MEDIA;
D O I
10.1103/PhysRevA.89.013812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the presence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Manipulating two-dimensional solitons in inhomogeneous nonlinear Schrodinger equation with power-law nonlinearity under PT-symmetric Rosen-Morse and hyperbolic Scarff-II potentials [J].
Manikandan, K. ;
Sudharsan, J. B. .
OPTIK, 2022, 256
[42]   Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential [J].
Zhong, Wei-Ping ;
Belic, Milivoj R. ;
Huang, Tingwen .
JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2012, 16 (04) :425-431
[43]   Stable dark solitons in PT-symmetric dual-core waveguides [J].
Bludov, Yu V. ;
Konotop, V. V. ;
Malomed, B. A. .
PHYSICAL REVIEW A, 2013, 87 (01)
[44]   Modulational instability in PT-symmetric Bragg grating structures with saturable nonlinearity [J].
Tamilselvan, K. ;
Govindarajan, A. ;
Inbavalli, I. ;
Alagesan, T. ;
Lakshmanan, M. .
PHYSICAL REVIEW A, 2023, 107 (05)
[45]   Bistable soliton switching dynamics in a PT-symmetric coupler with saturable nonlinearity [J].
Sahoo, Ambaresh ;
Mahato, Dipti Kanika ;
Govindarajan, A. ;
Sarma, Amarendra K. .
PHYSICAL REVIEW A, 2022, 105 (06)
[46]   On the existence of gap solitons in a periodic discrete nonlinear Schrodinger equation with saturable nonlinearity [J].
Zhou, Zhan ;
Yu, Jianshe ;
Chen, Yuming .
NONLINEARITY, 2010, 23 (07) :1727-1740
[47]   Dynamical evolution of optical solitons in the (1+1)-dimensional quintic-septimal media with PT-symmetric potentials [J].
Zhu, Yu ;
Li, Ji-tao ;
Qin, Wei ;
Liu, Wei-feng .
OPTIK, 2019, 181 :209-214
[48]   Optical solitons of the (1+1)-dimensional higher-order nonlinear Schrodinger equations with PT-symmetric potentials [J].
Xu, Bijun ;
Yan, Mengyao ;
Sun, Zhichao ;
Tong, Xin .
OPTIK, 2019, 181 :1019-1022
[49]   Two-dimensional gap solitons in cubic-quintic nonlinear media with PT-symmetric lattices and fractional diffraction [J].
Zhu, Xing ;
Belic, Milivoj R. ;
Mihalache, Dumitru ;
Xiang, Dan ;
Zeng, Liangwei .
EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (12)
[50]   A PT-Symmetric Dual-Core System with the Sine-Gordon Nonlinearity and Derivative Coupling [J].
Cuevas-Maraver, Jesus ;
Malomed, Boris A. ;
Kevrekidis, Panayotis G. .
SYMMETRY-BASEL, 2016, 8 (06)