Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity

被引:75
作者
Jisha, Chandroth P. [1 ]
Alberucci, Alessandro [2 ]
Brazhnyi, Valeriy A. [1 ]
Assanto, Gaetano [2 ]
机构
[1] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
[2] Nonlinear Opt & OptoElect Lab NooEL, I-00146 Rome, Italy
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
关键词
SPATIAL SOLITONS; OSCILLATORY INSTABILITIES; PROPAGATION; STABILITY; MEDIA;
D O I
10.1103/PhysRevA.89.013812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the presence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Counterpropagating optical solitons in PT-symmetric photonic lattices [J].
Stojanovic, Sasa ;
Strinic, Aleksandra ;
Petrovic, Milan .
OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (06)
[32]   Stable solitons in the 1D and 2D generalized nonlinear Schrodinger equations with the periodic effective mass and PT-symmetric potentials [J].
Chen, Yong ;
Yan, Zhenya .
ANNALS OF PHYSICS, 2017, 386 :44-57
[33]   Symmetry-breaking bifurcations and excitations of solitons in linearly coupled NLS equations with PT-symmetric potentials [J].
Song, Jin ;
Malomed, Boris A. ;
Yan, Zhenya .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2278)
[34]   Optical solitons in PT-symmetric nonlinear couplers with gain and loss [J].
Alexeeva, N. V. ;
Barashenkov, I. V. ;
Sukhorukov, Andrey A. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW A, 2012, 85 (06)
[35]   Interactions of bright and dark solitons with localized PT - symmetric potentials [J].
Karjanto, N. ;
Hanif, W. ;
Malomed, B. A. ;
Susanto, H. .
CHAOS, 2015, 25 (02)
[36]   Defect solitons supported by nonlocal PT symmetric superlattices [J].
Hu, Sumei ;
Lu, Daquan ;
Ma, Xuekai ;
Guo, Qi ;
Hu, Wei .
EPL, 2012, 98 (01)
[37]   Gap Solitons in Periodic Discrete Schrodinger Equations with Nonlinearity [J].
Shi, Haiping .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :1065-1075
[38]   Bright-dark and dark-dark solitons in coupled nonlinear Schrodinger equation with PT-symmetric potentials [J].
Nath, Debraj ;
Gao, Yali ;
Mareeswaran, R. Babu ;
Kanna, T. ;
Roy, Barnana .
CHAOS, 2017, 27 (12)
[39]   Vector solitons in parity-time symmetric lattices with nonlocal nonlinearity [J].
Li, Lei ;
Zhu, Xing ;
Li, Huagang ;
Lai, Tianshu .
JOURNAL OF OPTICS, 2016, 18 (09)
[40]   Stabilization of fundamental solitons in the nonlinear fractional Schrodinger equation with PT-symmetric nonlinear lattices [J].
Su, Weiwei ;
Deng, Hanying ;
Dong, Liangwei ;
Huang, Zhenfen ;
Huang, Changming .
CHAOS SOLITONS & FRACTALS, 2020, 141