HEAT EQUATION WITH A NONLINEAR BOUNDARY CONDITION AND UNIFORMLY LOCAL Lr SPACES

被引:21
作者
Ishige, Kazuhiro [1 ]
Sato, Ryuichi [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
Nonlinear boundary condition; heat equation; uniformly local L-r spaces; blow-up time; blow-up rate; BLOW-UP RATE; PARABOLIC EQUATIONS; GLOBAL EXISTENCE; CAUCHY-PROBLEM; TIME;
D O I
10.3934/dcds.2016.36.2627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the local existence and the uniqueness of solutions of the heat equation with a nonlinear boundary condition for the initial data in uniformly local L-r spaces. Furthermore, we study the sharp lower estimates of the blow-up time of the solutions with the initial data lambda psi as lambda -> 0 or lambda -> infinity and the lower blow-up estimates of the solutions.
引用
收藏
页码:2627 / 2652
页数:26
相关论文
共 36 条
[11]  
Chlebk M., 1999, Rend. Mat. Appl. (7) 19, V4, P449
[12]  
Deng K., 1994, Acta Math. Univ. Comenian. (N.S.), V63, P169
[13]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[14]  
DiBenedetto E., 1993, Degenerate parabolic equations, DOI [10.1007/978-1-4612-0895-2, DOI 10.1007/978-1-4612-0895-2]
[15]  
Fernandez Bonder J., 2001, TSUKUBA J MATH, V25, P215
[16]   THE BLOW-UP RATE FOR THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
FILA, M ;
QUITTNER, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (03) :197-205
[17]  
Fila M., 1989, COMMENT MATH U CAROL, V30, P479
[18]   LOCAL EXISTENCE OF GENERAL NONLINEAR PARABOLIC-SYSTEMS [J].
FILO, J ;
KACUR, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1597-1618
[19]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[20]  
Giga MH, 2010, PROG NONLINEAR DIFFE, V79, P1, DOI 10.1007/978-0-8176-4651-6