A generalized quantum microcanonical ensemble

被引:23
作者
Naudts, Jan [1 ]
Van der Straeten, Erik [1 ]
机构
[1] Univ Antwerp, Dept Fis, B-2020 Antwerp, Belgium
关键词
rigorous results in statistical mechanics; quantum phase transitions (theory);
D O I
10.1088/1742-5468/2006/06/P06015
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by combining a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtained in the canonical ensemble. Non-canonical averages can be obtained by taking into account conserved quantities which are non-linear functions of the microstate.
引用
收藏
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2001, MICROCANONICAL RM
[2]   Solvable model of quantum microcanonical states [J].
Bender, CM ;
Brody, DC ;
Hook, DW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (38) :L607-L613
[3]  
BRODY DC, 2005, QUANTPH0506163
[4]   Direct experimental evidence for a negative heat capacity in the liquid-to-gas phase transition in hydrogen cluster ions:: Backbending of the caloric curve -: art. no. 183403 [J].
Gobet, F ;
Farizon, B ;
Farizon, M ;
Gaillard, MJ ;
Buchet, JP ;
Carré, M ;
Scheier, P ;
Märk, TD .
PHYSICAL REVIEW LETTERS, 2002, 89 (18)
[5]   Canonical typicality [J].
Goldstein, S ;
Lebowitz, JL ;
Tumulka, R ;
Zanghì, N .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[6]  
GOLDSTEIN S, 2005, IN PRESS J STAT PHYS
[7]   SOLUBLE MODEL FOR A SYSTEM WITH NEGATIVE SPECIFIC HEAT [J].
HERTEL, P ;
THIRRING, W .
ANNALS OF PHYSICS, 1971, 63 (02) :520-&
[8]   AVERAGE ENTROPY OF A SUBSYSTEM [J].
PAGE, DN .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1291-1294
[9]  
POPESCU S, 2005, QUANTPH0511225
[10]   Negative heat capacity of sodium clusters -: art. no. 165401 [J].
Reyes-Nava, JA ;
Garzón, IL ;
Michaelian, K .
PHYSICAL REVIEW B, 2003, 67 (16) :1654011-1654018