Estimating Net Irrigation Across the North China Plain Through Dual Modeling of Evapotranspiration

被引:50
|
作者
Koch, Julian [1 ]
Zhang, Wenmin [2 ]
Martinsen, Grith [1 ]
He, Xin [1 ,3 ]
Stisen, Simon [1 ]
机构
[1] Geol Survey Denmark & Greenland, Dept Hydrol, Copenhagen, Denmark
[2] Nanjing Normal Univ, Sch Geog, Nanjing, Peoples R China
[3] China Inst Water Resources & Hydropower Res, Dept Water Resources, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
irrigation quantification; North China Plain; remote sensing; evapotranspiration; hydrologic model; WATER-USE EFFICIENCY; HAIHE RIVER-BASIN; SATELLITE DATA; GROUNDWATER SUSTAINABILITY; COMBINING SATELLITE; UNITED-STATES; WINTER-WHEAT; LAND DATA; AREAS; RESOURCES;
D O I
10.1029/2020WR027413
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Irrigation is the greatest human interference with the terrestrial water cycle. Detailed knowledge on irrigation is required to better manage water resources and to increase water use efficiency (WUE). This study applies a framework to quantify net irrigation at monthly timescale at a spatial resolution of 1 km(2) providing high spatial and temporal detail for regional water resources management. The study is conducted in the Haihe River Basin (HRB) in China encompassing the North China Plain (NCP), a global hot spot of groundwater depletion. Net irrigation is estimated based on the systematic evapotranspiration (ET) residuals between a remote sensing-based model and a hydrologic model that does not include an irrigation scheme. The results suggest an average annual net irrigation of 126 mm yr(-1) (15.2 km(3) yr(-1)) for NCP and 108 mm yr(-1) (18.6 km(3) yr(-1)) for HRB. It is found that net irrigation can be estimated with higher fidelity for winter crops than for summer crops. The simulated water balance for NCP is evaluated with Gravity Recovery and Climate Experiment (GRACE) data, and the net irrigation estimates can close the water balance gap. Annual winter wheat classifications reveal an increasing crop area with a trend of 2,200 km(2) yr(-1). This trend is not accompanied by a likewise increasing trend in irrigation water use, which suggests an increased WUE in the NCP, which is further supported by net primary productivity data. The proposed framework has potential to be transferred to other regions and support decision makers to support sustainable water management.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Modeling the impacts of climate, soil, and cultivar on optimal irrigation amount of winter wheat in the North China Plain
    Zheng, Junqing
    Wang, Jing
    Ren, Wei
    Tang, Jianzhao
    He, Di
    Huang, Mingxia
    Bai, Huiqing
    Wu, Bingjie
    AGRONOMY JOURNAL, 2020, 112 (02) : 1176 - 1189
  • [42] Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain
    Sun, Hong-Yong
    Liu, Chang-Ming
    Zhang, Xi-Ying
    Shen, Yan-Jun
    Zhang, Yong-Qiang
    AGRICULTURAL WATER MANAGEMENT, 2006, 85 (1-2) : 211 - 218
  • [43] Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain
    Shi, Xiaoli
    Shi, Wenjiao
    Dai, Na
    Wang, Minglei
    AGRICULTURE-BASEL, 2022, 12 (12):
  • [44] Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain
    Du, Zhenjie
    Zhao, Shuang
    She, Yingjun
    Zhang, Yan
    Yuan, Jingjing
    Rahman, Shafeeq Ur
    Qi, Xuebin
    Xu, Yue
    Li, Ping
    AGRICULTURE-BASEL, 2022, 12 (08):
  • [45] Luxury transpiration of winter wheat and its responses to deficit irrigation in North China Plain
    Liang, Yueping
    Gao, Yang
    Wang, Guangshuai
    Si, Zhuanyun
    Shen, Xiaojun
    Duan, Aiwang
    PLANT SOIL AND ENVIRONMENT, 2018, 64 (08) : 361 - 366
  • [46] Simulating the Impacts of Irrigation and Dynamic Vegetation Over the North China Plain on Regional Climate
    Wu, Liyang
    Feng, Jinming
    Miao, Wenhui
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (15) : 8017 - 8034
  • [47] Climate and management impacts on crop growth and evapotranspiration in the North China Plain based on long-term eddy covariance observation
    Yang, Cheng
    Lei, Huimin
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 325
  • [48] Measurement of evapotranspiration of mixed bush and grass in headwater region of North China Plain
    Li, FD
    Zhang, QY
    Gao, KC
    Xu, ZQ
    Song, XF
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1322 - 1325
  • [49] Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain
    Zhang, YQ
    Kendy, E
    Yu, Q
    Liu, CM
    Shen, YJ
    Sun, HY
    AGRICULTURAL WATER MANAGEMENT, 2004, 64 (02) : 107 - 122
  • [50] Evaluation of the FAO Aqua Crop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation
    Iqbal, M. Anjum
    Shen, Yanjun
    Stricevic, Ruzica
    Pei, Hongwei
    Sun, Hongyoung
    Amiri, Ebrahim
    Penas, Angel
    del Rio, Sara
    AGRICULTURAL WATER MANAGEMENT, 2014, 135 : 61 - 72