Isolation and characterization of cellulose nanofibrils from arecanut husk fibre

被引:316
作者
Chandra, Julie C. S. [1 ,2 ]
George, Neena [1 ,3 ]
Narayanankutty, Sunil K. [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Polymer Sci & Rubber Technol, Kochi 682022, Kerala, India
[2] KKTM Govt Coll, Dept Chem, Kodungallur, Thrissur, India
[3] Govt Coll Chittur, Dept Chem, Palakkad, India
关键词
Arecanut; Cellulose nanofibrils; Cellulose nanofibres; Homogenization; EXTRACTION; NANOCELLULOSE; NANOCRYSTALS; LIGNIN; HEMICELLULOSES; COMPOSITES; WHISKERS; STRAW;
D O I
10.1016/j.carbpol.2016.01.015
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The isolation of cellulose nanofibres from arecanut husk was achieved by a chemo-mechanical method thereby opening up a means for utilizing a waste product more effectively. The chemical processes involved alkali treatment, acid hydrolysis, and bleaching. The mechanical fibrillation was performed via grinding and homogenization. The chemical constituents at different stages of treatment of fibres were analyzed according to the ASTM standards. Morphological characterization was done using the scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The isolated nanofibers had an average diameter of below 10 nanometres and a very high aspect ratio in the range 120-150. Fourier transform infrared spectroscopy (FT-IR) showed the effective removal of the non cellulosic components. The crystallinity was increased with successive treatments as shown by the X-ray diffraction analysis (XRD). The TGA studies revealed a good thermal stability for the isolated nanofibres. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:158 / 166
页数:9
相关论文
共 54 条
[41]   Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior [J].
Rosa, M. F. ;
Medeiros, E. S. ;
Malmonge, J. A. ;
Gregorski, K. S. ;
Wood, D. F. ;
Mattoso, L. H. C. ;
Glenn, G. ;
Orts, W. J. ;
Imam, S. H. .
CARBOHYDRATE POLYMERS, 2010, 81 (01) :83-92
[42]   Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions [J].
Saito, Tsuguyuki ;
Hirota, Masayuki ;
Tamura, Naoyuki ;
Kimura, Satoshi ;
Fukuzumi, Hayaka ;
Heux, Laurent ;
Isogai, Akira .
BIOMACROMOLECULES, 2009, 10 (07) :1992-1996
[43]  
Segal L., 1959, Text. Res. J., V29, P786, DOI [10.1177/004051755902901003, DOI 10.1177/004051755902901003]
[44]   Production and Characterization of Cellulose Nanofibers from Wood Pulp [J].
Siddiqui, Nazia ;
Mills, Ryan H. ;
Gardner, Douglas J. ;
Bousfield, Douglas .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2011, 25 (6-7) :709-721
[45]  
SONG Q, 2014, ENERGIES, V7, P607, DOI DOI 10.3390/en7020607
[46]  
Srinivasa C., 2011, J Mater Environ Sci, V2, P351
[47]   Static bending and impact behaviour of areca fibers composites [J].
Srinivasa, C. V. ;
Arifulla, A. ;
Goutham, N. ;
Santhosh, T. ;
Jaeethendra, H. J. ;
Ravikumar, R. B. ;
Anil, S. G. ;
Kumar, D. G. Santhosh ;
Ashish, J. .
MATERIALS & DESIGN, 2011, 32 (04) :2469-2475
[48]   Characteristics of degraded cellulose obtained from steam-exploded wheat straw [J].
Sun, XF ;
Xu, F ;
Sun, RC ;
Fowler, P ;
Baird, MS .
CARBOHYDRATE RESEARCH, 2005, 340 (01) :97-106
[49]   Identification of bound water through infrared spectroscopy in methylcellulose [J].
Velazquez, G ;
Herrera-Gómez, A ;
Martín-Polo, MO .
JOURNAL OF FOOD ENGINEERING, 2003, 59 (01) :79-84
[50]   Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements [J].
Ververis, C. ;
Georghiou, K. ;
Danielidis, D. ;
Hatzinikolaou, D. G. ;
Santas, P. ;
Santas, R. ;
Corleti, V. .
BIORESOURCE TECHNOLOGY, 2007, 98 (02) :296-301