Hopf quasicomodules and Yetter-Drinfel'd quasicomodules

被引:11
作者
Gu, Yue [1 ]
Wang, Shuanhong [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
关键词
Braided monoidal category; Hopf coquasigroup; Hopf quasicomodule; long quasicomodule; Yang-Baxter equation; Yetter-Drinfel'd quasicomodule; QUASI-GROUPS; CATEGORIES; MODULES;
D O I
10.1080/00927872.2019.1646268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Hopf coquasigroup over a field k possessing an adjoint quasicoaction. We first show that if M is any right H-module and N is any right H-quasicomodule such that , where is a favorable map, then we have H = k. As an application of this result, we get that symmetric category of Yetter-Drinfeld quasicomodules over H is trivial, as a generalization of Pareigis' Theorem. Furthermore, let (H, R) be a quasitriangular Hopf coquasigroup and coquasitriangular Hopf coquasigroup. Then, we show that the category of generalized Long quasicomodules is a braided monoidal subcategory of Yetter-Drinfeld category . Finally, we give a new approach to a braided monoidal category by generalizing one of Schauenburg's main results in the setting of Hopf coquasigroups introduced by Klim and Majid. This yields new sources of braidings that provide solutions to the Yang-Baxter equation playing an important role in various areas of mathematics.
引用
收藏
页码:351 / 379
页数:29
相关论文
共 14 条
[1]   Quasigroups. I [J].
Albert, A. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :507-519
[2]   Projections and Yetter-Drinfel'd modules over Hopf (co)quasigroups [J].
Alonso Alvarez, J. N. ;
Fernandez Vilaboa, J. M. ;
Gonzalez Rodriguez, R. ;
Soneira Calvo, C. .
JOURNAL OF ALGEBRA, 2015, 443 :153-199
[3]  
Brzezinski T, 2010, INT ELECTRON J ALGEB, V8, P114
[4]  
Caenepeel S., 2002, Lecture Notes in Mathematics, V1787
[5]  
Fang X.L., 2011, J. Southeast Univ. (English Ed.), V27, P343
[6]   BRAIDED COMPACT CLOSED CATEGORIES WITH APPLICATIONS TO LOW DIMENSIONAL TOPOLOGY [J].
FREYD, PJ ;
YETTER, DN .
ADVANCES IN MATHEMATICS, 1989, 77 (02) :156-182
[7]   Hopf quasigroups and the algebraic 7-sphere [J].
Klim, J. ;
Majid, S. .
JOURNAL OF ALGEBRA, 2010, 323 (11) :3067-3110
[8]   Symmetric Yetter-Drinfeld categories are trivial [J].
Pareigis, B .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 155 (01) :91-91
[9]   Algebras, hyperalgebras, nonassociative bialgebras and loops [J].
Perez-Izquierdo, Jose M. .
ADVANCES IN MATHEMATICS, 2007, 208 (02) :834-876
[10]   YETTER-DRINFELD CATEGORIES ASSOCIATED TO AN ARBITRARY BIALGEBRA [J].
RADFORD, DE ;
TOWBER, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 87 (03) :259-279