Preparation of hollow fiber poly(N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation

被引:35
作者
Ji, Pengfei [1 ,2 ]
Cao, Yiming [1 ]
Zhao, Hongyong [1 ,2 ]
Kang, Guodong [1 ]
Jie, Xingming [1 ]
Liu, Dandan [1 ]
Liu, Jianhui [1 ]
Yuan, Quan [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
PDMAEMA-PEGMEMA copolymer; Composite membrane; Hollow fiber; Flue gas; CARBON-DIOXIDE; GAS-SEPARATION; PERMEATION PROPERTIES; SELECTIVE SEPARATION; CO2; SEPARATION; TRANSPORT; SOLUBILITY; POLYMER; LAYER; PERFORMANCE;
D O I
10.1016/j.memsci.2009.06.038
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A hollow fiber composite membrane was prepared by coating a poly(N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate) (PDMAEMA-PEGMEMA) skin layer onto a porous polysulfone (PSf) substrate. The influence of fabrication parameters including coating solution concentration and coating times on the permselectivity of the prepared membrane was investigated. For the composite membrane prepared from the optimal fabrication parameter, its CO2 permeance was about 30 GPU with CO2/N-2 selectivity of 31 at 35 degrees C and 202.65 kPa. Moreover, the effects of experimental temperature and pressure on the permselectivity of hollow fiber composite membranes were evaluated. The gas permeance increased with the increase of temperature, which obeyed Arrhenius relation. With the increase of pressure, N-2 showed the similar permeance that meant the transport of N-2 through membrane followed solution-diffusion mechanism, while for CO2, its permeance underwent a two step change (first increased then decreased) which suggested there might be two transporting models for CO2 (solution-diffusion and facilitated transport). In addition, it was found that water vapor in the feed gas not only caused plasticization, but also enhanced the interaction Of CO2 with amino groups in PDMAEMA-PEGMEMA skin layer. Both of the two effects contributed to a higher CO2 permeance compared with the condition that water vapor was absent. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 44 条
[1]  
[Anonymous], CLIM CHANG 2007 SYNT
[2]   Characterization of the porous support layer of composite gas permeation membranes [J].
Beuscher, U ;
Gooding, CH .
JOURNAL OF MEMBRANE SCIENCE, 1997, 132 (02) :213-227
[3]   Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes [J].
Cai, Yan ;
Wang, Zhi ;
Yi, Chunhai ;
Bai, Yunhua ;
Wang, Jixiao ;
Wang, Shichang .
JOURNAL OF MEMBRANE SCIENCE, 2008, 310 (1-2) :184-196
[4]   Morphology of integral-skin layers in hollow-fiber gas-separation membranes [J].
Carruthers, SB ;
Ramos, GL ;
Koros, WJ .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (02) :399-411
[5]   Fabrication of multi-layer composite hollow fiber membranes for gas separation [J].
Chung, TS ;
Shieh, JJ ;
Lau, WWY ;
Srinivasan, MP ;
Paul, DR .
JOURNAL OF MEMBRANE SCIENCE, 1999, 152 (02) :211-225
[6]  
DENG LY, 2008, J MEMBR SCI
[7]   Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation [J].
Ding, Xiaoli ;
Cao, Yiming ;
Zhao, Hongyong ;
Wang, Lina ;
Yuan, Quan .
JOURNAL OF MEMBRANE SCIENCE, 2008, 323 (02) :352-361
[8]   Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations [J].
Du, Runhong ;
Feng, Xianshe ;
Chakma, Amit .
JOURNAL OF MEMBRANE SCIENCE, 2006, 279 (1-2) :76-85
[9]  
Freeman B, 1997, TRENDS POLYM SCI, V5, P167
[10]   Polymeric facilitated transport membranes for hydrogen purification [J].
Hagg, May-Britt ;
Quinn, Robert .
MRS BULLETIN, 2006, 31 (10) :750-755