Numerical analysis of micro-macro simulations of polymeric fluid flows:: A simple case

被引:40
作者
Jourdain, B [1 ]
Lelièvre, T [1 ]
Le Bris, C [1 ]
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Champs Sur Marne, France
关键词
CONNFFESSIT; polymeric fluids; numerical analysis; finite element method; Monte Carlo method;
D O I
10.1142/S0218202502002100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
dWe present in this paper the numerical analysis of a simple micro-macro simulation of a polymeric fluid flow, namely the shear flow for the Hookean dumbbells model. Although restricted to this academic case (which is however used in practice as a test problem for new numerical strategies to be applied to more sophisticated cases), our study can be considered as a first step towards that of more complicated models. Our main result states the convergence of the fully discretized scheme (finite element in space, finite difference in time, plus Monte Carlo realizations) towards the coupled solution of a partial differential equation/stochastic differential equation system.
引用
收藏
页码:1205 / 1243
页数:39
相关论文
共 32 条
[21]   Dynamics and thermodynamics of complex fluids.: II.: Illustrations of a general formalism [J].
Öttinger, HC ;
Grmela, M .
PHYSICAL REVIEW E, 1997, 56 (06) :6633-6655
[22]  
Platen E., 1999, Acta Numerica, V8, P197, DOI 10.1017/S0962492900002920
[23]  
Quarteroni A., 1997, NUMERICAL APPROXIMAT
[24]   Initial-value problems with inflow boundaries for Maxwell fluids [J].
Renardy, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :914-931
[25]  
RENARDY M, 1983, ARCH RATION MECH AN, V83, P229, DOI 10.1007/BF00251510
[26]   AN EXISTENCE THEOREM FOR MODEL-EQUATIONS RESULTING FROM KINETIC THEORIES OF POLYMER-SOLUTIONS [J].
RENARDY, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :313-327
[27]   Non integrable extra stress tensor solution for a flow in a bounded domain of an Oldroyd fluid [J].
Sandri, D .
ACTA MECHANICA, 1999, 135 (1-2) :95-99
[28]  
Schowalter W. R., 1978, Mechanics of non-Newtonian fluids
[29]   Molecular orientation effects in viscoelasticity [J].
Suen, JKC ;
Joo, YL ;
Armstrong, RC .
ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 :417-444
[30]  
TEMAM R, 1979, NAVIERSTOKES EQUATIO