Schiffer's theorem in inverse scattering theory for periodic structures

被引:53
作者
Hettlich, F [1 ]
Kirsch, A [1 ]
机构
[1] UNIV KARLSRUHE,INST MATH 2,D-76128 KARLSRUHE,GERMANY
关键词
UNIQUENESS THEOREMS;
D O I
10.1088/0266-5611/13/2/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the inverse scattering problem to recover a periodic structure by scattered waves measured above the structure. It is shown that a finite number of incident plane waves is sufficient to identify the structure. Additionally by a monotonicity principle for the eigenvalues of the Laplacian some upper bounds of the required number of wavenumbers are presented if a priori information on the height of the structure is available.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 16 条
[1]  
ALBER HD, 1979, P ROY SOC EDINB A, V82, P251
[2]   UNIQUENESS THEOREMS FOR AN INVERSE PROBLEM IN A DOUBLY PERIODIC STRUCTURE [J].
AMMARI, H .
INVERSE PROBLEMS, 1995, 11 (04) :823-833
[3]   A UNIQUENESS THEOREM FOR AN INVERSE PROBLEM IN PERIODIC DIFFRACTIVE OPTICS [J].
BAO, G .
INVERSE PROBLEMS, 1994, 10 (02) :335-340
[4]   INVERSE PROBLEMS FOR SCATTERING BY PERIODIC STRUCTURES [J].
BAO, G ;
FRIEDMAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 132 (01) :49-72
[5]   UNIQUENESS RESULTS FOR DIRECT AND INVERSE SCATTERING BY INFINITE SURFACES IN A LOSSY MEDIUM [J].
CHANDLERWILDE, SN ;
ROSS, CR .
INVERSE PROBLEMS, 1995, 11 (05) :1063-1067
[6]  
CHEN X, 1991, T AM MATH SOC, V323, P456
[7]  
Colton D, 2019, INVERSE ACOUSTIC ELE
[8]  
FRIEDMAN A, 1990, MATH IND PROBLEMS 3
[9]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[10]   UNIQUENESS THEOREMS IN INVERSE SCATTERING-THEORY FOR PERIODIC STRUCTURES [J].
KIRSCH, A .
INVERSE PROBLEMS, 1994, 10 (01) :145-152