Increasing Energy Densities of Sulfur Cathodes using Dispersing and Calendering Processes for Lithium-Sulfur Batteries

被引:12
|
作者
Titscher, Paul [1 ,3 ]
Schoen, Patrick [2 ,3 ]
Horst, Marcella [1 ,3 ]
Krewer, Ulrike [2 ,3 ]
Kwade, Arno [1 ,3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 5, D-38104 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Energy & Proc Syst Engn, Franz Liszt Str 35, D-38106 Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Battery LabFactory Braunschweig, Langer Kamp 19, D-38106 Braunschweig, Germany
关键词
batteries; calendering; electrochemistry; materials processing; mechanical properties; INTENSIVE DRY; ION; PERFORMANCE; ELECTRODES; COMPOSITES; MILL;
D O I
10.1002/ente.201700916
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-sulfur batteries are nearly ready to be commercialized. However, each material composition has specific challenges regarding its adaption to state of the art production lines of lithium-ion batteries. The influence of the dispersing and calendering process on the battery performance is investigated with an easy-to-implement material approach and a solvent-based process. The slurry is treated by different dispersing intensities using an extruder and a triple roller mill, which leads to increased energy densities. The coating is calendered to increase the energy density by maintaining the specific capacity. The reactions within the sulfur cathodes are investigated by evaluating the potentials of the upper and lower voltage plateaus. It was determined that the variation of the process parameters leads to a changed reactivity of the polysulfide reactions but not to a shift of the sulfur utilization within the sulfur cathodes. The process parameters influence the pore structure of the cathode, resulting in different sensitivities for higher C-rates.
引用
收藏
页码:1139 / 1147
页数:9
相关论文
共 50 条
  • [1] MXenes in sulfur cathodes for lithium-sulfur batteries
    Wong, Andrew Jun Yao
    Lieu, Wei Ying
    Yang, Hui Ying
    Seh, Zhi Wei
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (22) : 3890 - 3905
  • [2] Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries
    Zhao, Meng
    Peng, Hong-Jie
    Li, Bo-Quan
    Huang, Jia-Qi
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (04) : 545 - 557
  • [3] Gravimetric and volumetric energy densities of lithium-sulfur batteries
    Xue, Weijiang
    Miao, Lixiao
    Qie, Long
    Wang, Chao
    Li, Sa
    Wang, Jiulin
    Li, Ju
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 6 (01) : 92 - 99
  • [4] High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
    Lv, Dongping
    Zheng, Jianming
    Li, Qiuyan
    Xie, Xi
    Ferrara, Seth
    Nie, Zimin
    Mehdi, Layla B.
    Browning, Nigel D.
    Zhang, Ji-Guang
    Graff, Gordon L.
    Liu, Jun
    Xiao, Jie
    ADVANCED ENERGY MATERIALS, 2015, 5 (16)
  • [5] Synergistic sulfur-selenium cathodes for lithium-sulfur batteries
    Wei, Shanyue
    Chen, Huixin
    Yu, Fuda
    Wu, Xiaowei
    Que, Lanfang
    Hu, Ting
    Wang, Jiangli
    Huang, Miaoliang
    Lu, Can-Zhong
    Xie, Yiming
    JOURNAL OF POWER SOURCES, 2024, 598
  • [6] Capacity Fade Analysis of Sulfur Cathodes in Lithium-Sulfur Batteries
    Yan, Jianhua
    Liu, Xingbo
    Li, Bingyun
    ADVANCED SCIENCE, 2016, 3 (12):
  • [7] Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries
    Fu, Yongzhu
    Su, Yu-Sheng
    Manthiram, Arumugam
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) : A1420 - A1424
  • [8] Recent progress in sulfur cathodes for application to lithium-sulfur batteries
    Li, Yongying
    Shapter, Joseph G.
    Cheng, Hui
    Xu, Guiying
    Gao, Guo
    PARTICUOLOGY, 2021, 58 : 1 - 15
  • [9] Advanced Cathodes for Practical Lithium-Sulfur Batteries
    Hwang, Jang-Yeon
    Park, Hyeona
    Kim, Hun
    Kansara, Shivam
    Sun, Yang-Kook
    ACCOUNTS OF MATERIALS RESEARCH, 2025, 6 (02): : 245 - 258
  • [10] Perfluorinated Ionomer-Enveloped Sulfur Cathodes for Lithium-Sulfur Batteries
    Song, Jongchan
    Choo, Min-Ju
    Noh, Hyungjun
    Park, Jung-Ki
    Kim, Hee-Tak
    CHEMSUSCHEM, 2014, 7 (12) : 3341 - 3346