Nonlinear flow through double porosity media in variable exponent Sobolev spaces

被引:23
作者
Amaziane, B. [1 ]
Pankratov, L. [1 ,2 ]
Piatnitski, A. [3 ,4 ]
机构
[1] Univ Pau & Pays Adour, Lab Math & Leurs Applicat, CNRS, UMR 5142, F-64000 Pau, France
[2] Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] Lebedev Phys Inst RAS, Moscow 119991, Russia
关键词
Homogenizations; Double porosity models; Nonlinear; Nonstandard growth; SINGLE-PHASE FLOW; ELLIPTIC-EQUATIONS; POROUS-MEDIUM; HOMOGENIZATION; MODEL; CONVERGENCE; EXTENSION;
D O I
10.1016/j.nonrwa.2008.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We studied the asymptotic behavior of the solution of a nonlinear parabolic equation with nonstandard growth in a epsilon-periodic fractured medium, where F is the parameter that characterizes the scale of the microstructure tending to zero. We consider a double porosity type model describing the flow of a compressible fluid in a heterogeneous anisotropic porous medium obeying the nonlinear Darcy law. We assume that the permeability ratio of matrix blocks to fractures is of order epsilon(p epsilon(x)) where p(epsilon) is a continuous positive function. We obtained the convergence of the solution and a macroscopic model of the problem was constructed using the notion of two-scale convergence combined with the variational homogenization method in the framework of Sobolev spaces with variable exponents. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2521 / 2530
页数:10
相关论文
共 35 条
[1]   AN EXTENSION THEOREM FROM CONNECTED SETS, AND HOMOGENIZATION IN GENERAL PERIODIC DOMAINS [J].
ACERBI, E ;
PIAT, VC ;
DALMASO, G ;
PERCIVALE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (05) :481-496
[2]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[3]   Homogenization of a single phase flow through a porous medium in a thin layer [J].
Amaziane, B. ;
Pankratov, L. ;
Piatnitski, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (09) :1317-1349
[4]   Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media [J].
Amaziane, B. ;
Pankratov, L. ;
Piatnitski, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :1131-1155
[5]   Homogenization of a degenerate triple porosity model with thin fissures [J].
Amaziane, B ;
Goncharenko, M ;
Pankratov, L .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :335-359
[6]   Characterization of the flow for a single fluid in an excavation damaged zone [J].
Amaziane, B ;
Bourgeat, A ;
Goncharenko, M ;
Pankratov, L .
COMPTES RENDUS MECANIQUE, 2004, 332 (01) :79-84
[7]   Homogenization of a class of nonlinear elliptic equations with nonstandard growth [J].
Amaziane, Brahim ;
Antontsev, Stanislav ;
Pankratov, Leonid .
COMPTES RENDUS MECANIQUE, 2007, 335 (03) :138-143
[8]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[9]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[10]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545