Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase

被引:13
作者
Abdallah, Noreldeen H. [1 ]
Schlumpberger, Miriam [1 ]
Gaffney, Darragh A. [1 ]
Hanrahan, John P. [2 ]
Tobin, Joseph M. [2 ]
Magner, Edmond [1 ]
机构
[1] Univ Limerick, Dept Chem & Environm Sci, Mat & Surface Sci Inst, Limerick, Ireland
[2] Glantreo Ltd, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
soporous silicate; Immobilisation; Lipase; Cytochrome c; CANDIDA-ANTARCTICA; ADSORPTION; ENZYMES; BIOCATALYST; PARTICLES; PROTEINS; SURFACE; SBA-15; SIZE;
D O I
10.1016/j.molcatb.2014.06.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The activity and stability of Candida antartica lipase B (CALB) and cytochrome c immobilised onto SBA-15 and a porous spherical silicate material (PPS) were examined. The materials possess similar pore diameters but have different morphologies, pore volumes and surface areas. CALB exhibited higher catalytic activity and stability on SBA-15 when compared to PPS, while cytochrome c showed similar catalytic activity on both materials. The activity of CALB immobilised on SBA-15 was retained (95%) after 7 uses, while CALB immobilised on PPS retained only 43% activity. Such changes can be mainly ascribed to the different physical properties (pore volume, surface area and pore shape) of the supports. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 43 条
[21]   Immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads improves butyl acetate synthesis [J].
Graebin, Natalia G. ;
Martins, Andrea B. ;
Lorenzoni, Andre S. G. ;
Garcia-Galan, Cristina ;
Fernandez-Lafuente, Roberto ;
Ayub, Marco A. Z. ;
Rodrigues, Rafael C. .
BIOTECHNOLOGY PROGRESS, 2012, 28 (02) :406-412
[22]   Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica-The effect of varied particle size and morphology [J].
Gustafsson, Hanna ;
Johansson, Emma M. ;
Barrabino, Albert ;
Oden, Magnus ;
Holmberg, Krister .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 100 :22-30
[23]   Pressure-driven enzyme entrapment in siliceous mesocellular foam [J].
Han, Y ;
Lee, SS ;
Ying, JY .
CHEMISTRY OF MATERIALS, 2006, 18 (03) :643-649
[24]   Understanding enzyme immobilisation [J].
Hanefeld, Ulf ;
Gardossi, Lucia ;
Magner, Edmond .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (02) :453-468
[25]   Immobilization of enzymes on porous silicas - benefits and challenges [J].
Hartmann, Martin ;
Kostrov, Xenia .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (15) :6277-6289
[26]   Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends [J].
Hartmann, Martin ;
Jung, Dirk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (05) :844-857
[27]   Methodology for the immobilization of enzymes onto mesoporous materials [J].
Hudson, S ;
Magner, E ;
Cooney, J ;
Hodnett, BK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (41) :19496-19506
[28]   Proteins in Mesoporous Silicates [J].
Hudson, Sarah ;
Cooney, Jakki ;
Magner, Edmond .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) :8582-8594
[29]   Formation of Cross-Linked Chloroperoxidase Aggregates in the Pores of Mesocellular Foams: Characterization by SANS and Catalytic Properties [J].
Jung, Dirk ;
Paradiso, Michelangelo ;
Wallacher, Dirk ;
Brandt, Astrid ;
Hartmann, Martin .
CHEMSUSCHEM, 2009, 2 (02) :161-164
[30]   A modified Stober process for the production of mesoporous Sub 2 micron silica microspheres; applications in HPLC [J].
Keane, D. A. ;
Hanrahan, J. P. ;
Copley, M. P. ;
Holmes, J. D. ;
Morris, M. A. .
JOURNAL OF POROUS MATERIALS, 2010, 17 (02) :145-152