Effects of phase delay on synchronization in a nonlinear micromechanical oscillator

被引:22
作者
Huan, Ronghua [1 ]
Pu, Dong [1 ,2 ]
Wang, Xuefeng [1 ,2 ]
Wei, Xueyong [2 ,3 ]
机构
[1] Zhejiang Univ, Dept Mech, Key Lab Soft Machines & Smart Devices Zhejiang Pr, Hangzhou 310027, Zhejiang, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
NOISE-REDUCTION;
D O I
10.1063/1.5090977
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phase feedback is commonly utilized to set up a MEMS oscillator. In most studies, the phase delay is fixed on /2 for a maximum oscillation amplitude. In this letter, we study the dynamics of synchronization in a nonlinear micromechanical oscillator operating on different phase delays. The analytical and experimental results show that the synchronization region shifts and the size of this region varies depending on the phase delay. The frequency stability of the self-sustained oscillator holds the best in the case of phase delay equal to /2 and can be further improved to the same level after synchronization. Our work reveals the effects of phase delay on synchronization and presents an easy-to-implement strategy for tuning the synchronization by controlling the phase delay of the oscillation feedback circuit in a nonlinear micromechanical oscillator.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators [J].
Agrawal, Deepak K. ;
Woodhouse, Jim ;
Seshia, Ashwin A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[2]  
[Anonymous], 2008, NONLINEAR OSCIL
[3]  
[Anonymous], 2017, CANCER DISCOV, V7, pOF12, DOI DOI 10.1063/1.4978222
[4]  
[Anonymous], 2018, AJIL, V112, pF1, DOI [10.1017/ajil.2018.46, DOI 10.1063/1.5000786]
[5]   Nonlinearity-Induced Synchronization Enhancement in Micromechanical Oscillators [J].
Antonio, Dario ;
Czaplewski, David A. ;
Guest, Jeffrey R. ;
Lopez, Daniel ;
Arroyo, Sebastian I. ;
Zanette, Damian H. .
PHYSICAL REVIEW LETTERS, 2015, 114 (03)
[6]   Frequency stabilization in nonlinear micromechanical oscillators [J].
Antonio, Dario ;
Zanette, Damian H. ;
Lopez, Daniel .
NATURE COMMUNICATIONS, 2012, 3
[7]   Synchronization properties of self-sustained mechanical oscillators [J].
Arroyo, Sebastian I. ;
Zanette, Damian H. .
PHYSICAL REVIEW E, 2013, 87 (05)
[8]  
Association of Paediatric Anaesthetists of Great Britain and Ireland, 2012, PAEDIAT ANAESTH S1, V22, pS1, DOI DOI 10.1088/0960-1317/22/1/013001
[9]   Improving the frequency precision of oscillators by synchronization [J].
Cross, M. C. .
PHYSICAL REVIEW E, 2012, 85 (04)
[10]   MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J].
Dhooge, A ;
Govaerts, W ;
Kuznetsov, YA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :141-164