3D Printed Anatomical Nerve Regeneration Pathways

被引:236
作者
Johnson, Blake N. [1 ,2 ]
Lancaster, Karen Z. [3 ,4 ]
Zhen, Gehua [5 ]
He, Junyun [6 ]
Gupta, Maneesh K. [1 ]
Kong, Yong Lin [1 ]
Engel, Esteban A. [3 ,4 ]
Krick, Kellin D. [7 ]
Ju, Alex [1 ]
Meng, Fanben [1 ]
Enquist, Lynn W. [3 ,4 ]
Jia, Xiaofeng [8 ,9 ]
McAlpine, Michael C. [1 ,10 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Virginia Tech, Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Johns Hopkins Univ, Sch Med, Dept Orthoped Surg, Baltimore, MD 21205 USA
[6] Univ Maryland, Sch Med, Dept Neurosurg, Baltimore, MD 21201 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Univ Maryland, Sch Med, Orthoped, Dept Neurosurg, Baltimore, MD 21201 USA
[9] Johns Hopkins Univ, Sch Med, Dept Biomed Engn Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA
[10] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D printing; 3D scanning; nerve regeneration; neural engineering; tissue engineering; OF-THE-ART; GROWTH-FACTOR; ELECTRONICS; STRATEGIES; HYDROGELS; DELIVERY; RELEASE; REPAIR; POLYMERS; CONDUITS;
D O I
10.1002/adfm.201501760
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path-specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.
引用
收藏
页码:6205 / 6217
页数:13
相关论文
共 50 条
  • [41] 3D printed device for epitachophoresis
    Voracova, Ivona
    Prikryl, Jan
    Novotny, Jakub
    Datinska, Vladimira
    Yang, Jaeyoung
    Astier, Yann
    Foret, Frantisek
    ANALYTICA CHIMICA ACTA, 2021, 1154
  • [42] Comparison of 3D printed anatomical model qualities in acetabular fracture representation
    Salazar, David A.
    Cramer, Justin
    Markin, Nicholas W.
    Hunt, Nathaniel H.
    Linke, Gabe
    Siebler, Justin
    Zuniga, Jorge
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (07)
  • [43] 3D Printed Anatomical Model for Surgical Planning: a Pediatric Hospital Experience
    Formisano, M.
    Iuppariello, L.
    Mirone, G.
    Cinalli, G.
    Casaburi, A.
    Guida, P.
    Clemente, F.
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [44] Creation of 3D Printed Anatomical Models for Teaching Purposes of Dentistry Students
    Petkova, Viktoria
    Dukov, Nikolay
    2024 12TH E-HEALTH AND BIOENGINEERING CONFERENCE, EHB 2024, 2024, : 361 - 364
  • [45] 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration
    Zhang, Wenhai
    Shi, Wen
    Wu, Shaohua
    Kuss, Mitchell
    Jiang, Xiping
    Untrauer, Jason B.
    Reid, St Patrick
    Duan, Bin
    BIOFABRICATION, 2020, 12 (03)
  • [46] Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration
    Chakka, Jaidev L.
    Acri, Timothy
    Laird, Noah Z.
    Zhong, Ling
    Shin, Kyungsup
    Elangovan, Satheesh
    Salem, Aliasger K.
    RSC ADVANCES, 2021, 11 (22) : 13282 - 13291
  • [47] 3D printing for tissue/organ regeneration in China
    He, Chaofan
    He, Jiankang
    Wu, Chengtie
    Ruan, Changshun
    Gu, Qi
    Hao, Yongqiang
    Wu, Yang
    Bai, Shuo
    Han, Xiaoxiao
    Ouyang, Liliang
    Yin, Jun
    Zhou, Hongzhao
    Xiong, Zhuo
    Xie, Maobin
    Shao, Lei
    Nie, Jing
    Ma, Liang
    Shuai, Cijun
    Zhou, Changchun
    Zhao, Xin
    Shi, Xuetao
    Yu, Mengfei
    Fu, Jiayin
    Wen, Peng
    Xuan, Huixia
    Pang, Yuan
    Wang, Yan'en
    Sun, Yuan
    Gao, Ziqi
    Aazmi, Abdellah
    Zhang, Jingbo
    Qiao, Tianhong
    Yang, Qixiang
    Yao, Ke
    Mao, Mao
    Hao, Jianxin
    Wang, Pinpin
    Yang, Jirong
    Qu, Huawei
    Wang, Xinhuan
    Liu, Xin
    Ji, Shen
    Liu, Shasha
    Fu, Jingke
    Lu, Bingxian
    Wu, Mohan
    Chen, Feng
    Zheng, Zihao
    Zhang, Boqing
    Chai, Muyuan
    BIO-DESIGN AND MANUFACTURING, 2025, 8 (02) : 169 - 242
  • [48] Fiber-reinforced hydrogel combined with 3D printed scaffolds for regeneration of osteochondral defects
    Liu, Huan
    Dou, Yichen
    Wei, Jiawei
    Xiao, Shiqi
    Jin, Shue
    Yuan, Li
    Wen, Jing
    Liu, Jiangshan
    Li, Yubao
    Li, Jidong
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 335
  • [49] Inverted human umbilical artery as a 3D scaffold for sciatic nerve regeneration in rats
    Lecoq, Flore-Anne
    Barnouin, Laurence
    Ardouin, Ludovic
    Hartmann, Daniel
    Obert, Laurent
    CELL AND TISSUE BANKING, 2022, 23 (04) : 909 - 922
  • [50] 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles
    Diba, Mani
    Koons, Gerry L.
    Bedell, Matthew L.
    Mikos, Antonios G.
    BIOMATERIALS, 2021, 274