3D Printed Anatomical Nerve Regeneration Pathways

被引:238
|
作者
Johnson, Blake N. [1 ,2 ]
Lancaster, Karen Z. [3 ,4 ]
Zhen, Gehua [5 ]
He, Junyun [6 ]
Gupta, Maneesh K. [1 ]
Kong, Yong Lin [1 ]
Engel, Esteban A. [3 ,4 ]
Krick, Kellin D. [7 ]
Ju, Alex [1 ]
Meng, Fanben [1 ]
Enquist, Lynn W. [3 ,4 ]
Jia, Xiaofeng [8 ,9 ]
McAlpine, Michael C. [1 ,10 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Virginia Tech, Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Johns Hopkins Univ, Sch Med, Dept Orthoped Surg, Baltimore, MD 21205 USA
[6] Univ Maryland, Sch Med, Dept Neurosurg, Baltimore, MD 21201 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Univ Maryland, Sch Med, Orthoped, Dept Neurosurg, Baltimore, MD 21201 USA
[9] Johns Hopkins Univ, Sch Med, Dept Biomed Engn Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA
[10] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D printing; 3D scanning; nerve regeneration; neural engineering; tissue engineering; OF-THE-ART; GROWTH-FACTOR; ELECTRONICS; STRATEGIES; HYDROGELS; DELIVERY; RELEASE; REPAIR; POLYMERS; CONDUITS;
D O I
10.1002/adfm.201501760
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path-specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.
引用
收藏
页码:6205 / 6217
页数:13
相关论文
共 50 条
  • [21] Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration
    Lee, Ui-Lyong
    Yun, Seokhwan
    Cao, Hua-Lian
    Ahn, Geunseon
    Shim, Jin-Hyung
    Woo, Su-Heon
    Choung, Pill-Hoon
    CELLS, 2021, 10 (06)
  • [22] Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration
    Karanth, Divakar
    Puleo, David
    Dawson, Dolph
    Holliday, L. S.
    Sharab, Lina
    CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2023, 9 (02): : 398 - 408
  • [23] 3D printed PCL/SrHA scaffold for enhanced bone regeneration
    Liu, Dinghua
    Nie, Wei
    Li, Dejian
    Wang, Weizhong
    Zheng, Lixia
    Zhang, Jingtian
    Zhang, Jiulong
    Peng, Chen
    Mo, Xiumei
    He, Chuanglong
    CHEMICAL ENGINEERING JOURNAL, 2019, 362 : 269 - 279
  • [24] Computational Modelling Of 3D Printed Scaffolds for Heart Valve Regeneration
    Georgi, M.
    Wu, L.
    Ma, H.
    Hamilton, G.
    Song, W.
    BRITISH JOURNAL OF SURGERY, 2021, 108
  • [25] 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration
    Yang, Chen
    Huan, Zhiguang
    Wang, Xiaoya
    Wu, Chengtie
    Chang, Jiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 608 - 616
  • [26] Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration
    Kundreckaite, Paula
    Sesok, Andzela
    Stonkus, Rimantas
    Gaidulis, Gediminas
    Romanczuk-Ruszuk, Eliza
    Pauk, Jolanta
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (04) : 182 - 189
  • [27] HIERARCHICALLY MINERALIZING 3D PRINTED SCAFFOLDS FOR HARD TISSUE REGENERATION
    Hasan, Abshar
    Marshall, Karen
    Wojciechowski, Jonathan
    Elsharkawy, Sherif
    Eglin, David
    Oreffo, Richard
    Stevens, Molly
    Mata, Alvaro
    TISSUE ENGINEERING PART A, 2022, 28 : S350 - S351
  • [28] 3D printed grafts with gradient structures for organized vascular regeneration
    Chen, Yuewei
    Zou, Zhongfei
    Fu, Tao
    Li, Zhuang
    Zhang, Zhaojie
    Zhu, Meng
    Gao, Qing
    Wu, Shaofei
    Fu, Guosheng
    He, Yong
    Fu, Jiayin
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (03)
  • [29] 3D printed grafts with gradient structures for organized vascular regeneration
    Yuewei Chen
    Zhongfei Zou
    Tao Fu
    Zhuang Li
    Zhaojie Zhang
    Meng Zhu
    Qing Gao
    Shaofei Wu
    Guosheng Fu
    Yong He
    Jiayin Fu
    International Journal of Extreme Manufacturing, 2024, 6 (03) : 509 - 525
  • [30] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)