3D Printed Anatomical Nerve Regeneration Pathways

被引:243
作者
Johnson, Blake N. [1 ,2 ]
Lancaster, Karen Z. [3 ,4 ]
Zhen, Gehua [5 ]
He, Junyun [6 ]
Gupta, Maneesh K. [1 ]
Kong, Yong Lin [1 ]
Engel, Esteban A. [3 ,4 ]
Krick, Kellin D. [7 ]
Ju, Alex [1 ]
Meng, Fanben [1 ]
Enquist, Lynn W. [3 ,4 ]
Jia, Xiaofeng [8 ,9 ]
McAlpine, Michael C. [1 ,10 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Virginia Tech, Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[5] Johns Hopkins Univ, Sch Med, Dept Orthoped Surg, Baltimore, MD 21205 USA
[6] Univ Maryland, Sch Med, Dept Neurosurg, Baltimore, MD 21201 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Univ Maryland, Sch Med, Orthoped, Dept Neurosurg, Baltimore, MD 21201 USA
[9] Johns Hopkins Univ, Sch Med, Dept Biomed Engn Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA
[10] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D printing; 3D scanning; nerve regeneration; neural engineering; tissue engineering; OF-THE-ART; GROWTH-FACTOR; ELECTRONICS; STRATEGIES; HYDROGELS; DELIVERY; RELEASE; REPAIR; POLYMERS; CONDUITS;
D O I
10.1002/adfm.201501760
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 3D printing methodology for the design, optimization, and fabrication of a custom nerve repair technology for the regeneration of complex peripheral nerve injuries containing bifurcating sensory and motor nerve pathways is introduced. The custom scaffolds are deterministically fabricated via a microextrusion printing principle using 3D models, which are reverse engineered from patient anatomies by 3D scanning. The bifurcating pathways are augmented with 3D printed biomimetic physical cues (microgrooves) and path-specific biochemical cues (spatially controlled multicomponent gradients). In vitro studies reveal that 3D printed physical and biochemical cues provide axonal guidance and chemotractant/chemokinetic functionality. In vivo studies examining the regeneration of bifurcated injuries across a 10 mm complex nerve gap in rats showed that the 3D printed scaffolds achieved successful regeneration of complex nerve injuries, resulting in enhanced functional return of the regenerated nerve. This approach suggests the potential of 3D printing toward advancing tissue regeneration in terms of: (1) the customization of scaffold geometries to match inherent tissue anatomies; (2) the integration of biomanufacturing approaches with computational modeling for design, analysis, and optimization; and (3) the enhancement of device properties with spatially controlled physical and biochemical functionalities, all enabled by the same 3D printing process.
引用
收藏
页码:6205 / 6217
页数:13
相关论文
共 72 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[3]   Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform [J].
Ayres, Chantal ;
Bowlin, Gary L. ;
Henderson, Scott C. ;
Taylor, Leander ;
Shultz, Jackie ;
Alexander, John ;
Telemeco, Todd A. ;
Simpson, David G. .
BIOMATERIALS, 2006, 27 (32) :5524-5534
[4]   Rapid prototyping or rapid production? 3D printing processes move industry towards the latter [J].
Bak, D .
ASSEMBLY AUTOMATION, 2003, 23 (04) :340-345
[5]  
Biddis E. A., 2005, INT J MECH MATER DES, V1, P317
[6]   Personalized Neuroprosthetics [J].
Borton, David ;
Micera, Silvestro ;
Millan, Jose del R. ;
Courtine, Gregoire .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (210)
[7]   Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling [J].
Cao, T ;
Ho, KH ;
Teoh, SH .
TISSUE ENGINEERING, 2003, 9 :S103-S112
[8]   Defining the concentration gradient of nerve growth factor for guided neurite outgrowth [J].
Cao, X ;
Shoichet, MS .
NEUROSCIENCE, 2001, 103 (03) :831-840
[9]   Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system [J].
Ch'ng, TH ;
Enquist, LW .
JOURNAL OF VIROLOGY, 2005, 79 (17) :10875-10889
[10]   Pharmaco-metabonomic phenotyping and personalized drug treatment [J].
Clayton, TA ;
Lindon, JC ;
Cloarec, O ;
Antti, H ;
Charuel, C ;
Hanton, G ;
Provost, JP ;
Le Net, JL ;
Baker, D ;
Walley, RJ ;
Everett, JR ;
Nicholson, JK .
NATURE, 2006, 440 (7087) :1073-1077