Word Embeddings for Arabic Sentiment Analysis

被引:0
|
作者
Altowayan, A. Aziz [1 ]
Tao, Lixin [1 ]
机构
[1] Pace Univ, Dept Comp Sci, New York, NY 10038 USA
来源
2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2016年
关键词
sentiment; word embeddings;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manual feature extraction is a challenging and time consuming task, especially in a Morphologically Rich Language (MRL) such as Arabic. In this paper, we rely on word embeddings as the main source of features for opinion mining in Arabic text such as tweets, consumer reviews, and news articles. First, we compile a large Arabic corpus from various sources to learn word representations. Second, we train and generate word vectors (embeddings) from the corpus. Third, we use the embeddings in our feature representation for training several binary classifiers to detect subjectivity and sentiment in both Standard Arabic and Dialectal Arabic. We compare our results with other methods in literature; our approach-with no hand-crafted features-achieves a slightly better accuracy than the top hand-crafted methods. To reproduce our results and for further work, we publish the data and code used in our experiments.
引用
收藏
页码:3820 / 3825
页数:6
相关论文
共 50 条
  • [1] A Comparative Study of Pre-trained Word Embeddings for Arabic Sentiment Analysis
    Zouidine, Mohamed
    Khalil, Mohammed
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1243 - 1248
  • [2] Refining Word Embeddings with Sentiment Information for Sentiment Analysis
    Kasri M.
    Birjali M.
    Nabil M.
    Beni-Hssane A.
    El-Ansari A.
    El Fissaoui M.
    Journal of ICT Standardization, 2022, 10 (03): : 353 - 382
  • [3] Improving Arabic Sentiment Analysis with Sentiment-Specific Embeddings
    Altowayan, A. Aziz
    Elnagar, Ashraf
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4314 - 4320
  • [4] Quality of Word Embeddings on Sentiment Analysis Tasks
    Cano, Erion
    Morisio, Maurizio
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 332 - 338
  • [5] Pre-trained Word Embeddings for Arabic Aspect-Based Sentiment Analysis of Airline Tweets
    Ashi, Mohammed Matuq
    Siddiqui, Muazzam Ahmed
    Nadeem, Farrukh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 241 - 251
  • [6] Exploring Word Embedding for Arabic Sentiment Analysis
    Gayed, Sana
    Mallat, Souheyl
    Zrigui, Mounir
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 92 - 101
  • [7] Refined Global Word Embeddings Based on Sentiment Concept for Sentiment Analysis
    Wang, Yabing
    Huang, Guimin
    Li, Jun
    Li, Hui
    Zhou, Ya
    Jiang, Hua
    IEEE ACCESS, 2021, 9 : 37075 - 37085
  • [8] Sentiment Analysis in Turkish Based on Weighted Word Embeddings
    Onan, Aytug
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [9] Sentiment analysis with covariate-assisted word embeddings
    Xu, Shirong
    Dai, Ben
    Wang, Junhui
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 3015 - 3039
  • [10] Cross-domain sentiment aware word embeddings for review sentiment analysis
    Liu, Jun
    Zheng, Shuang
    Xu, Guangxia
    Lin, Mingwei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (02) : 343 - 354