Two results on entire solutions of Ginzburg-Landau system in higher dimensions

被引:21
作者
Farina, A [1 ]
机构
[1] Univ Picardie, CNRS, UMR 6140, Fac Math & Informat LAMFA, F-80039 Amiens, France
关键词
Ginzburg Landau systems; nonlinear elliptic systems of PDE; Liouville-type theorems; symmetry;
D O I
10.1016/j.jfa.2003.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short article we prove two results on the Ginzburg-Landau system of equations Deltau = u(\u\(2) - 1), where u is an element of C-2 (R-N, R-M) (N, M greater than or equal to 1). First we prove a Liouville-type theorem which asserts that every solution it, satisfying integral(RN)(\u\(2) - 1)(2) < + infinity, is constant (and of unit norm), provided N greater than or equal to 4 (here M greater than or equal to 1). In our second result, we give an answer to a question raised by Brezis (open problem 3 of (Proceedings of the Symposium on Pure Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1999), about the symmetry for the Ginzburg Landau system in the case N = M greater than or equal to 3. We also formulate three open problems concerning the classification of entire solutions of the Ginzburg Landau system in any dimension. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:386 / 395
页数:10
相关论文
共 20 条
[1]   Radial solutions of the Ginzburg-Landau equation in R-N [J].
Akopian, V ;
Farina, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :601-604
[2]   Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions (vol 186, pg 432, 2001) [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :548-549
[3]   Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions [J].
Bethuel, F ;
Brezis, H ;
Orlandi, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) :432-520
[4]   QUANTIZATION EFFECT FOR DELTA-U=U(1 - VERTICAL-BAR-U-VERTICAL-BAR(2)) IN R(2) [J].
BREZIS, H ;
MERLE, F ;
RIVIERE, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) :35-58
[5]  
BREZIS H, LECT GINZBURG LANDAU
[6]  
BREZIS H, 1999, P S PUR MATH, P1
[7]   On the remarkable families of isoparametric hypersurfaces in spherical spaces. [J].
Cartan, E .
MATHEMATISCHE ZEITSCHRIFT, 1939, 45 :335-367
[8]  
Cartan E., 1938, Ann. Mat. Pura Appl, V17, P177, DOI [10.1007/BF02410700, DOI 10.1007/BF02410700]
[9]   SHOOTING METHOD FOR VORTEX SOLUTIONS OF A COMPLEX-VALUED GINZBURG-LANDAU EQUATION [J].
CHEN, XF ;
ELLIOTT, CM ;
QI, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1075-1088
[10]  
EELLS J, 1993, ANN MATH STUD, P1