Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

被引:19
作者
Frota, Cicero Lopes [1 ]
Vicente, Andre [2 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, Maringa, Parana, Brazil
[2] Univ Estadual Oeste Parana, Ctr Ciencias Exatas & Tecnol, Cascavel, PR, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 03期
关键词
Nonlinear wave equation; Acoustic boundary conditions; Uniform stabilization; Localized damping; ASYMPTOTIC STABILITY; DECAY; EXISTENCE; DOMAINS;
D O I
10.1007/s00033-018-0977-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset of the domain and the boundary damping is of the viscoelastic type.
引用
收藏
页数:24
相关论文
共 31 条
[1]  
[Anonymous], 1993, DIFFER INTEGR EQUATI
[2]   SPECTRAL PROPERTIES OF AN ACOUSTIC BOUNDARY-CONDITION [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (09) :895-917
[3]   ACOUSTIC BOUNDARY-CONDITIONS [J].
BEALE, JT ;
ROSENCRA.SI .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) :1276-1278
[4]   Uniform decay rate estimates for Schrodinger and plate equations with nonlinear locally distributed damping [J].
Bortot, C. A. ;
Cavalcanti, M. M. ;
Correa, W. J. ;
Domingos Cavalcanti, V. N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) :3729-3764
[5]   Polynomial Decay and Blow Up of Solutions for Variable Coefficients Viscoelastic Wave Equation with Acoustic Boundary Conditions [J].
Boukhatem, Yamna ;
Benabderrahmane, Benyattou .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (02) :153-174
[6]   Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions [J].
Boukhatem, Yamna ;
Benabderrahmane, Benyattou .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 :191-209
[7]   Asymptotic Stability of the Wave Equation on Compact Manifolds and Locally Distributed Damping: A Sharp Result [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Fukuoka, R. ;
Soriano, J. A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (03) :925-964
[8]   ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING-A SHARP RESULT [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domincos ;
Fukuoka, R. ;
Soriano, J. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4561-4580
[9]   Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Valeria N. Domingos ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :407-459
[10]   INTRINSIC DECAY RATE ESTIMATES FOR THE WAVE EQUATION WITH COMPETING VISCOELASTIC AND FRICTIONAL DISSIPATIVE EFFECTS [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Lasiecka, Irena ;
Falcao Nascimento, Flavio A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :1987-2012