Global Strong Solutions of the Vlasov-Poisson-Boltzmann System in Bounded Domains

被引:43
作者
Cao, Yunbai [1 ]
Kim, Chanwoo [1 ]
Lee, Donghyun [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00205-019-01374-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When dilute charged particles are confined in a bounded domain, boundary effects are crucial in the global dynamics. We construct a unique global-in-time solution to the Vlasov-Poisson-Boltzmann system in convex domains with the diffuse boundary condition. The construction is based on an L-2-L framework with a novel nonlinear-normed energy estimate of a distribution function in some weighted W-1,W-p-spaces and C-2,C--estimates of the self-consistent electric potential. Moreover we prove an exponential convergence of the distribution function toward the global Maxwellian.
引用
收藏
页码:1027 / 1130
页数:104
相关论文
共 34 条
[1]  
[Anonymous], 2009, LECT NOTES MATH
[2]  
Arsenio D., ARXIV160401547
[3]  
Cao Y, ARXIV190304935
[4]  
Cao Y, ARXIV181209388
[5]  
Cercignani C., 1994, APPL MATH SCI, V106
[6]  
Chen H., PREPRINT
[7]   On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation [J].
Desvillettes, L ;
Villani, C .
INVENTIONES MATHEMATICAE, 2005, 159 (02) :245-316
[8]   ON LONG-TIME ASYMPTOTICS OF THE VLASOV-POISSON-BOLTZMANN EQUATION [J].
DESVILLETTES, L ;
DOLBEAULT, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :451-489
[9]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[10]   Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law [J].
Esposito, R. ;
Guo, Y. ;
Kim, C. ;
Marra, R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) :177-239