Scattering for NLS with a delta potential

被引:36
作者
Banica, Valeria [1 ]
Visciglia, Nicola [2 ]
机构
[1] Univ Evry, Dept Math, LaMME, UMR 8071, 23 Bd France, F-91037 Evry, France
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
关键词
NONLINEAR SCHRODINGER-EQUATION; FAST SOLITON SCATTERING; WAVE-OPERATORS; BLOW-UP; COMPACTNESS; CONVERGENCE; STATES; DEFECT; TIME;
D O I
10.1016/j.jde.2015.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove H-1 scattering for the mass-supercritical defocusing nonlinear Schrodinger equation perturbed by a repulsive delta potential. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4410 / 4439
页数:30
相关论文
共 44 条
[1]   The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1 [J].
Adami, R ;
Sacchetti, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (39) :8379-8392
[2]   CONSTRAINED ENERGY MINIMIZATION AND GROUND STATES FOR NLS WITH POINT DEFECTS [J].
Adami, Riccardo ;
Noja, Diego ;
Visciglia, Nicola .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (05) :1155-1188
[3]   Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect [J].
Adami, Riccardo ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
[4]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
[5]  
BAHOURI H, 1997, PROG NONLIN, V32, P17
[6]   CONVERGENCE OF SOLUTIONS OF H-SYSTEMS OR HOW TO BLOW BUBBLES [J].
BREZIS, H ;
CORON, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (01) :21-56
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Sharp weights in the Cauchy problem for nonlinear Schrodinger equations with potential [J].
Carles, Remi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :2087-2094
[9]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[10]   Scattering and wave operators for one-dimensional Schrodinger operators with slowly decaying nonsmooth potentials [J].
Christ, M ;
Kiselev, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) :1174-1234