Chern classes of reductive groups and an adjunction formula

被引:10
作者
Kiritchenko, Valentina [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
reductive groups; hyperplane section; Chern classes;
D O I
10.5802/aif.2211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first and the last nontrivial Chern classes are described explicitly. An extension of these results to the setting of spherical homogeneous spaces is outlined.
引用
收藏
页码:1225 / 1256
页数:32
相关论文
共 27 条
[1]  
Bien F, 1996, COMPOS MATH, V104, P1
[2]   COHOMOLOGY OF REGULAR EMBEDDINGS [J].
BIFET, E ;
DECONCINI, C ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1990, 82 (01) :1-34
[3]  
BRAVI P, ARXIVORGMATHAG041047
[4]   GENERALIZATION OF SYMMETRICAL SPACES [J].
BRION, M .
JOURNAL OF ALGEBRA, 1990, 134 (01) :115-143
[5]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[6]   The behaviour at infinity of the Bruhat decomposition [J].
Brion, M .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (01) :137-174
[7]  
BRION M, ARXIVORGMATHAG050319
[8]  
De Concini C., 1985, ADV STUD PURE MATH, V6, P481
[9]  
DECONCINI C, 1983, LECT NOTES MATH, V996, P1
[10]  
DECONCINI C, 1986, P INT C MATH BERK CA, V2, P369