Multiresolution Preconditioners for Solving Realistic Multi-Scale Complex Problems

被引:6
作者
Solis, Diego M. [1 ]
Martin, Victor F. [2 ]
Taboada, Jose M. [2 ]
Vipiana, Francesca [3 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Univ Extremadura, Dept Tecnol Comp & Comunicac, Caceres 10003, Spain
[3] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
关键词
Integral equations; Dielectrics; Surface impedance; Method of moments; Mathematical models; Surface waves; MLFMA; multiresolution preconditioners (MR); fast solvers; surface integral equations (SIE); Maxwell's equations; method of moments (MoM); multilevel fast multipole algorithm (MLFMA); scattering; radiation; FIELD INTEGRAL-EQUATION; ELECTROMAGNETIC SCATTERING PROBLEMS; FAST MULTIPOLE ALGORITHM; FFT PARALLEL ALGORITHM; WAVE SCATTERING; MOM ANALYSIS; MLFMA; SIMULATION; SOLVER;
D O I
10.1109/ACCESS.2022.3153034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, the hierarchic multiresolution (MR) preconditioner is combined with the multilevel fast multipole algorithm-fast Fourier transform (MLFMA-FFT) and efficiently parallelized in multicore computers for computing electromagnetic scattering and radiation from complex problems exhibiting deep multi-scale features. The problem is formulated using the thin-dielectric-sheet (TDS) approximation for thin dielectric materials and the electric and combined field integral equations (EFIE/CFIE) for conducting objects. The parallel MLFMA-FFT is tailored to accommodate the MR hierarchical functions, which provide vast improvement of the matrix system conditioning by accurately handling multi-scale mesh features in different levels of detail. The higher (coarser) level hierarchical functions are treated by an algebraic incomplete LU decomposition preconditioner, which has been efficiently embedded into the parallel framework to further accelerate the solution. Numerical examples are presented to demonstrate the precision and efficiency of the proposed approach for the solution of realistic multi-scale scattering and radiation problems.
引用
收藏
页码:22038 / 22048
页数:11
相关论文
共 49 条
  • [1] Physical and analytical properties of a stabilized electric field integral equation
    Adams, RJ
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (02) : 362 - 372
  • [2] Electromagnetic Integral Equations: Insights in Conditioning and Preconditioning
    Adrian, Simon B.
    Dely, Alexandre
    Consoli, Davide
    Merlini, Adrien
    Andriulli, Francesco P.
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2021, 2 : 1143 - 1174
  • [3] Hierarchical bases for nonhierarchic 3-D triangular meshes
    Andriulli, Francesco P.
    Vipiana, Francesca
    Vecchi, Giuseppe
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) : 2288 - 2297
  • [4] A multiplicative Calderon preconditioner for the electric field integral equation
    Andriulli, Francesco P.
    Cools, Kristof
    Bagci, Hakan
    Olyslager, Femke
    Buffa, Annalisa
    Christiansen, Snorre
    Michielssen, Eric
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) : 2398 - 2412
  • [5] [Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
  • [6] Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm
    Araujo, M. G.
    Taboada, J. M.
    Rivero, J.
    Solis, D. M.
    Obelleiro, F.
    [J]. OPTICS LETTERS, 2012, 37 (03) : 416 - 418
  • [7] A Hierarchical Fast Solver for EFIE-MoM Analysis of Multiscale Structures at Very Low Frequencies
    Bautista, M. A. Echeverri
    Francavilla, M. A.
    Vipiana, F.
    Vecchi, G.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (03) : 1523 - 1528
  • [8] A Nonconformal Domain Decomposition Scheme for the Analysis of Multiscale Structures
    Bautista, Mario A. Echeverri
    Vipiana, Francesca
    Francavilla, Matteo Alessandro
    Vasquez, Jorge A. Tobon
    Vecchi, Giuseppe
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (08) : 3548 - 3560
  • [9] Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations
    Bruno, Oscar
    Elling, Tim
    Paffenroth, Randy
    Turc, Catalin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6169 - 6183
  • [10] Application of multiresolution preconditioner technique for scattering problem in a half space
    Chen, H.
    Ding, D. Z.
    Chen, R. S.
    Wang, D. X.
    Yung, Edward K. N.
    [J]. 2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 975 - +