The asymptotic behavior of the linear transmission problem in viscoelasticity

被引:40
作者
Alves, Margareth [1 ]
Rivera, Jaime Munoz [2 ]
Sepulveda, Mauricio [3 ,4 ]
Vera Villagran, Octavio [5 ]
Zegarra Garay, Maria [6 ]
机构
[1] Univ Fed Vicosa, Vicosa, MG, Brazil
[2] LNCC, Petropolis, RJ, Brazil
[3] Univ Concepcion, CI2MA, Concepcion, Chile
[4] Univ Concepcion, DIM, Concepcion, Chile
[5] DM Univ Biobio, Concepcion, Chile
[6] U San Marcos, Fac Matemat, Lima, Peru
关键词
Kelvin-Voigt; viscoelastic damping; transmission problem; semigroup; polynomial decay; Newmark-; method; 35Q74; 74-XX; SEMILINEAR WAVE-EQUATION; EXPONENTIAL DECAY; ENERGY; STABILITY; SYSTEMS;
D O I
10.1002/mana.201200319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a transmission problem with localized Kelvin-Voigt viscoelastic damping. Our main result is to show that the corresponding semigroup (SA(t))t0 is not exponentially stable, but the solution of the system decays polynomially to zero as 1/t2 when the initial data are taken over the domain D(A). Moreover, we prove that this rate of decay is optimal. Finally, using a second order scheme that ensures the decay of energy (Newmark- method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.
引用
收藏
页码:483 / 497
页数:15
相关论文
共 27 条
[1]  
[Anonymous], 1989, Boundary Stabilization of Thin Plates
[2]   Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation [J].
Avalos, G ;
Lasiecka, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :155-182
[3]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[4]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[5]  
CHANG SK, 1998, OPTIMAL CONTROL THEO
[6]   EXPONENTIAL DECAY OF ENERGY OF EVOLUTION-EQUATIONS WITH LOCALLY DISTRIBUTED DAMPING [J].
CHEN, G ;
FULLING, SA ;
NARCOWICH, FJ ;
SUN, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (01) :266-301
[7]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[8]  
Gokhberg I. Ts., 1969, Introduction to the Theory of Linear Nonselfadjoint Operators
[10]  
Huang F., 1985, Ann. Diff. Equa., V1, P43