A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

被引:1940
作者
Gong, Shu [2 ]
Schwalb, Willem [3 ]
Wang, Yongwei [1 ,2 ]
Chen, Yi [1 ]
Tang, Yue [1 ,2 ]
Si, Jye [1 ]
Shirinzadeh, Bijan [3 ]
Cheng, Wenlong [1 ,2 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[2] Melbourne Ctr Nanofabricat, Clayton, Vic 3800, Australia
[3] Monash Univ, Fac Engn, Clayton, Vic 3800, Australia
关键词
TACTILE SENSOR; STRAIN SENSOR; TRIBOELECTRIC NANOGENERATORS; ELECTRONIC SKIN; LARGE-AREA; TRANSPARENT; ENERGY; LIGHTWEIGHT; TRANSISTORS; MATRIX;
D O I
10.1038/ncomms4132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5V with low energy consumption (<30 mu W), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa(-1)) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.
引用
收藏
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 2013, ADV MATER, DOI DOI 10.1002/ADMA.201370294
[2]   Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors [J].
Chen, Po-Jui ;
Rodger, Damien C. ;
Saati, Saloomeh ;
Humayun, Mark S. ;
Tai, Yu-Chong .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (06) :1342-1351
[3]   Mechanically Strong, Optically Transparent, Giant Metal Superlattice Nanomembranes From Ultrathin Gold Nanowires [J].
Chen, Yi ;
Ouyang, Zi ;
Gu, Min ;
Cheng, Wenlong .
ADVANCED MATERIALS, 2013, 25 (01) :80-85
[4]   A flexible capacitive tactile sensing array with floating electrodes [J].
Cheng, M-Y ;
Huang, X-H ;
Ma, C-W ;
Yang, Y-J .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (11)
[5]   A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks [J].
Cohen, Daniel J. ;
Mitra, Debkishore ;
Peterson, Kevin ;
Maharbiz, Michel M. .
NANO LETTERS, 2012, 12 (04) :1821-1825
[6]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[7]   Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering [J].
Feng, Huajun ;
Yang, Yanmei ;
You, Yumeng ;
Li, Gongping ;
Guo, Jun ;
Yu, Ting ;
Shen, Zexiang ;
Wu, Tom ;
Xing, Bengang .
CHEMICAL COMMUNICATIONS, 2009, (15) :1984-1986
[8]   Flexible Tactile Sensor Using the Reversible Deformation of Poly(3-hexylthiophene) Nanofiber Assemblies [J].
Gao, Qiang ;
Meguro, Hikaru ;
Okamoto, Shuji ;
Kimura, Mutsumi .
LANGMUIR, 2012, 28 (51) :17593-17596
[9]   Highly conductive paper for energy-storage devices [J].
Hu, Liangbing ;
Choi, Jang Wook ;
Yang, Yuan ;
Jeong, Sangmoo ;
La Mantia, Fabio ;
Cui, Li-Feng ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21490-21494
[10]   Triboelectric Nanogenerator Built on Suspended 3D Spiral Structure as Vibration and Positioning Sensor and Wave Energy Harvester [J].
Hu, Youfan ;
Yang, Jin ;
Jing, Qingshen ;
Niu, Simiao ;
Wu, Wenzhuo ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (11) :10424-10432