Geometric lattice actions, entropy and fundamental groups

被引:8
作者
Fisher, D
Zimmer, RJ
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
lattices in Lie groups; rigidity; rigid geometric structures; entropy;
D O I
10.1007/s00014-002-8342-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a lattice in a noncompact simple Li Group G, where R - rank(G) > 2. Suppose Gamma acts analytically and ergodically on a compact manifold M preserving a unimodular rigid geometric structure (e.g. a connection and a volume). We show that either the F action is isometric or there exists a "large image" linear representation sigma of pi(1) (M). Under an additional assumption on the dynamics of the action, we associate to sigma a virtual arithmetic quotient of full entropy.
引用
收藏
页码:326 / 338
页数:13
相关论文
共 13 条
[1]  
FERES R, IN PRESS P STRASB C
[2]  
FISHER D, IN PRESS ERGODIC TH
[3]  
GROMOV M, 1988, GEOMETRIE DIFFERENTI
[4]  
LEWIS J, IN PRESS GEOM DED
[5]   Arithmetic structure of fundamental groups and actions of semisimple Lie groups [J].
Lubotzky, A ;
Zimmer, RJ .
TOPOLOGY, 2001, 40 (04) :851-869
[6]  
Pesin Ja.B., 1977, Russ. Math. Surv., V32, P55, DOI 10.1070/RM1977v032n04ABEH001639
[7]  
PESIN Y, COMMUNICATION
[8]  
Zimmer R.J., 1984, Monographs in Mathematics, V81
[9]   SUPERRIGIDITY, RATNER THEOREM, AND FUNDAMENTAL-GROUPS [J].
ZIMMER, RJ .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 74 (2-3) :199-207
[10]   ON THE ALGEBRAIC HULL OF AN AUTOMORPHISM GROUP OF A PRINCIPAL BUNDLE [J].
ZIMMER, RJ .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (03) :375-387