On the Planning Problem for the Mean Field Games System

被引:63
作者
Porretta, Alessio [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Mean field games; Planning problem; Optimal transport problem; Exact controllability; NONLINEAR PARABOLIC EQUATIONS;
D O I
10.1007/s13235-013-0080-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the planning problem for a class of mean field games, consisting in a coupled system of a Hamilton-Jacobi-Bellman equation for the value function u and a Fokker-Planck equation for the density m of the players, whereas one wishes to drive the density of players from the given initial configuration to a target one at time T through the optimal decisions of the agents. Assuming that the coupling F(x,m) in the cost criterion is monotone with respect to m, and that the Hamiltonian has some growth bounded below and above by quadratic functions, we prove the existence of a weak solution to the system with prescribed initial and terminal conditions m (0), m (1) (positive and smooth) for the density m. This is also a special case of an exact controllability result for the Fokker-Planck equation through some optimal transport field.
引用
收藏
页码:231 / 256
页数:26
相关论文
共 13 条
[1]   MEAN FIELD GAMES: NUMERICAL METHODS FOR THE PLANNING PROBLEM [J].
Achdou, Yves ;
Camilli, Fabio ;
Capuzzo-Dolcetta, Italo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) :77-109
[2]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[3]  
Blanchard D., 2001, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e serie, V30, P583
[4]   Nonlinear parabolic equations with measure data [J].
Boccardo, L ;
DallAglio, A ;
Gallouet, T ;
Orsina, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (01) :237-258
[5]   LONG TIME AVERAGE OF MEAN FIELD GAMES [J].
Cardaliaguet, Pierre ;
Lasry, Jean-Michel ;
Lions, Pierre-Louis ;
Porretta, Alessio .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (02) :279-301
[6]  
Huang MY, 2006, COMMUN INF SYST, V6, P221
[7]   An invariance principle in large population stochastic dynamic games [J].
Huang, Minyi ;
Caines, Peter E. ;
Malhame, Roland P. .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (02) :162-172
[8]  
Lasry J.-M., 2011, LECT NOTES MATH
[9]   Mean field games [J].
Lasry, Jean-Michel ;
Lions, Pierre-Louis .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :229-260
[10]   Mean field games. II - Finite horizon and optimal control. [J].
Lasry, Jean-Michel ;
Lions, Pierre-Louis .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) :679-684