Numerical modeling for the combustion of simulated solid rocket motor propellant

被引:12
作者
Hegab, A. M. [1 ]
Sait, H. H. [1 ]
Hussain, A. [2 ]
Said, A. S. [3 ]
机构
[1] Rabigh King Abdulaziz Univ, Fac Engn, Dept Mech Engn, Rabigh, Saudi Arabia
[2] King Abdulaziz Univ, Dept Nucl Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Jeddah 21589, Saudi Arabia
关键词
Solid rocket propellants; Moving interfaces; Level set method; Sandwich propellant; AP/HTPB; Alternating-Direction-Implicit (ADI) solver; FLAMES; FLOW;
D O I
10.1016/j.compfluid.2013.10.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The numerical procedure for the burning of Ammonium Perchlorate (AP) with a Fuel-Binder (Hydroxyl Terminated Polybutadience HTPB) heterogeneous propellant is presented. This model accounts for the two-step reaction mechanism for the primary diffusion flame at the interface between Binder (B) and the oxidizer AP and the AP premixed flame. The complete coupling between the gas-phase, the condensed-phase, and the unsteady non-uniform regression of the propellant surface is considered. The parameters used in this model are chosen to fit experimental data for the burning of the composite AP/Binder. The propagation of the unsteady non-planer regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The Alternating-Direction-Implicit (ADI) solver is employed to solve the full Navier-Stokes equations in the gas phase for the variable density model. The results show the effect of various parameters on the surface propagation speed, flame structure, and the burning surface geometry. A comparison between the computational and experimental results is presented. (C)e 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 31 条
[1]   Effect of fuel binder and oxidiser particle diameter on the combustion of ammonium perchlorate based propellants [J].
Al-Harthi, A ;
Williams, A .
FUEL, 1998, 77 (13) :1451-1468
[2]   Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle [J].
Balabel, A. ;
Hegab, A. M. ;
Nasr, M. ;
El-Behery, Samy M. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (07) :3408-3422
[3]   IMPLICIT FACTORED SCHEME FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BEAM, RM ;
WARMING, RF .
AIAA JOURNAL, 1978, 16 (04) :393-402
[4]  
Beckstead M.W., 1970, AIAA Journal, V8, P2200, DOI [10.2514/3.6087, DOI 10.2514/3.6087]
[5]  
Brewster M.Q., 2001, 37 AIAA ASME SAE ASE
[6]   An elementary discussion of propellant flame geometry [J].
Buckmaster, J ;
Jackson, TL ;
Yao, J .
COMBUSTION AND FLAME, 1999, 117 (03) :541-552
[7]  
Cai W, 2000, 38 AER SCI M
[8]  
El-Askary WA, 2011, CMES-COMP MODEL ENG, V82, P29
[9]  
El-Askary WA, 2011, CMES-COMP MODEL ENG, V76, P235
[10]  
Handley J. C., 1974, 74122 AIAA