Poisson-Dirichlet statistics for the extremes of a randomized Riemann zeta function*

被引:6
作者
Ouimet, Frederic [1 ]
机构
[1] Univ Montreal, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
extreme value theory; Riemann zeta function; Ghirlanda-Guerra identities; Gibbs measure; Poisson-Dirichlet variable; ultrametricity; spin glasses; MODELS; FIELD;
D O I
10.1214/18-ECP154
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In [4], the authors prove the convergence of the two-overlap distribution at low temperature for a randomized Riemann zeta function on the critical line. We extend their results to prove the Ghirlanda-Guerra identities. As a consequence, we find the joint law of the overlaps under the limiting mean Gibbs measure in terms of poisson-Dirichlet variables. It is expected that we can adapt the approach to prove the same result for the Riemann zeta function itself.
引用
收藏
页数:15
相关论文
共 26 条
[1]  
[Anonymous], 1970, Princeton Mathematical Series
[2]  
Arguin L.-P., 2018, PREPRINT, P1
[3]   Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line [J].
Arguin, Louis-Pierre ;
Belius, David ;
Bourgade, Paul ;
Radziwill, Maksym ;
Soundararajan, Kannan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) :500-535
[4]   MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION, AND BRANCHING RANDOM WALKS [J].
Arguin, Louis-Pierre ;
Belius, David ;
Harper, Adam J. .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (01) :178-215
[5]   Poisson-Dirichlet statistics for the extremes of the two-dimensional discrete Gaussian free field [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-19
[6]   POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD [J].
Arguin, Louis-Pierre ;
Zindy, Olivier .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1446-1481
[7]   Some exact results on the ultrametric overlap distribution in mean field spin glass models (I) [J].
Baffioni, F ;
Rosati, F .
EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (03) :439-447
[8]   Derrida's Generalised Random Energy models 1: models with finitely many hierarchies [J].
Bovier, A ;
Kurkova, I .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (04) :439-480
[9]   Derrida's Generalized Random Energy models 2: models with continuous hierarchies [J].
Bovier, A ;
Kurkova, I .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (04) :481-495
[10]   RANDOM-ENERGY MODEL - LIMIT OF A FAMILY OF DISORDERED MODELS [J].
DERRIDA, B .
PHYSICAL REVIEW LETTERS, 1980, 45 (02) :79-82