Apatite mineralization abilities and mechanical properties of covalently cross-linked pectin hydrogels

被引:17
作者
Ichibouji, Takashi [1 ]
Miyazaki, Toshiki [1 ]
Ishida, Eiichi [2 ]
Sugino, Atsushi [3 ]
Ohtsuki, Chikara [4 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Wakamatsu Ku, Kitakyushu, Fukuoka 8080196, Japan
[2] Kyushu Inst Technol, Fac Engn, Tobata Ku, Kitakyushu, Fukuoka 8048550, Japan
[3] Nakashima Med Co Ltd, Okayama 7008691, Japan
[4] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2009年 / 29卷 / 06期
基金
日本学术振兴会;
关键词
Pectin; Apatite; Cross-linking; Simulated body fluid; Mechanical properties; SIMULATED BODY-FLUID; FORMING ABILITY; POLYAMIDE FILMS; GEL; DEPENDENCE; SILICA;
D O I
10.1016/j.msec.2009.01.027
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Natural bone has features such as high fracture toughness and bone-bonding bioactivity, and is organic-inorganic hybrid composed of collagen and apatite crystals. Therefore, apatite-polymer hybrids designed to mimic the structure of bone represent candidates for high-performance bone substitutes. In this study, we prepared pectin hydrogels through covalent cross-linking using divinylsulfone (DVS) and investigated their apatite-forming abilities of the gels in simulated body fluid (SBF) and mechanical properties by tensile test. The obtained results were interpreted in terms of surface charge of the gels and chemical reaction with SBF. The apple- and citrus-derived gels formed the apatite on their surfaces in SBF within 3 days. These gels showed tensile strength around 30 MPa. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1765 / 1769
页数:5
相关论文
共 26 条
[1]   DEPENDENCE OF APATITE FORMATION ON SILICA-GEL ON ITS STRUCTURE - EFFECT OF HEAT-TREATMENT [J].
CHO, SB ;
NAKANISHI, K ;
KOKUBO, T ;
SOGA, N ;
OHTSUKI, C ;
NAKAMURA, T ;
KITSUGI, T ;
YAMAMURO, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (07) :1769-1774
[2]  
Hench L.L., 1993, INTRO BIOCERAMICS, P41
[3]  
Hench L.L., 1971, Journal of Biomedical Materials Research Symposium, V36, P117, DOI [10.1002/jbm.820050611, DOI 10.1002/JBM.820050611]
[4]  
Hench L.L.J. Wilson., 1993, INTRO BIOCERAMICS, V1
[5]   BIOCERAMICS - FROM CONCEPT TO CLINIC [J].
HENCH, LL .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (07) :1487-1510
[6]   Evaluation of apatite-forming ability and mechanical property of pectin hydrogels [J].
Ichibouji, Takashi ;
Miyazaki, Toshiki ;
Ishida, Eiichi ;
Ashizuka, Masahiro ;
Sugino, Atsushi ;
Ohtsuki, Chikara ;
Kuramoto, Kouichi .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2008, 116 (1349) :74-78
[7]  
JARCHO M, 1977, J BIOENG, V1, P79
[8]   Degradation of bioactive polydimethylsiloxane-CaO-SiO2-TiO2 and poly (tetramethylene oxide)-CaO-TiO2 hybrids in a simulated body fluid [J].
Kamitakahara, M ;
Kawashita, M ;
Miyata, N ;
Kokubo, T ;
Nakamura, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (02) :235-239
[9]   Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process [J].
Kawai, T ;
Ohtsuki, C ;
Kamitakahara, M ;
Miyazaki, T ;
Tanihara, M ;
Sakaguchi, Y ;
Konagaya, S .
BIOMATERIALS, 2004, 25 (19) :4529-4534
[10]   Effect of modified pectin molecules on the growth of bone cells [J].
Kokkonen, Hanna E. ;
Ilvesaro, Joanna M. ;
Morra, Marco ;
Schols, Henk A. ;
Tuukkanen, Juha .
BIOMACROMOLECULES, 2007, 8 (02) :509-515