Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome

被引:24
作者
Bernstein, David B. [1 ,2 ]
Dewhirst, Floyd E. [3 ,4 ]
Segre, Daniel [1 ,2 ,5 ,6 ,7 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Biol Design Ctr, Boston, MA 02215 USA
[3] Forsyth Inst, Cambridge, MA USA
[4] Harvard Sch Dent Med, Boston, MA USA
[5] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
[6] Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA
[7] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
来源
ELIFE | 2019年 / 8卷
基金
美国国家科学基金会;
关键词
GENOME; MODELS; TM7; RECONSTRUCTION; BACTERIA; ECOLOGY; HEALTH; TOOL; CULTIVATION; MEMBRANES;
D O I
10.7554/eLife.39733
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.
引用
收藏
页数:33
相关论文
共 120 条
  • [1] Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis
    Akashi, H
    Gojobori, T
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) : 3695 - 3700
  • [2] Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes
    Albertsen, Mads
    Hugenholtz, Philip
    Skarshewski, Adam
    Nielsen, Kare L.
    Tyson, Gene W.
    Nielsen, Per H.
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (06) : 533 - +
  • [3] Enumeration of minimal stoichiometric precursor sets in metabolic networks
    Andrade, Ricardo
    Wannagat, Martin
    Klein, Cecilia C.
    Acuna, Vicente
    Marchetti-Spaccamela, Alberto
    Milreu, Paulo V.
    Stougie, Leen
    Sagot, Marie-France
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2016, 11
  • [4] KBase: The United States Department of Energy Systems Biology Knowledgebase
    Arkin, Adam P.
    Cottingham, Robert W.
    Henry, Christopher S.
    Harris, Nomi L.
    Stevens, Rick L.
    Maslov, Sergei
    Dehal, Paramvir
    Ware, Doreen
    Perez, Fernando
    Canon, Shane
    Sneddon, Michael W.
    Henderson, Matthew L.
    Riehl, William J.
    Murphy-Olson, Dan
    Chan, Stephen Y.
    Kamimura, Roy T.
    Kumari, Sunita
    Drake, Meghan M.
    Brettin, Thomas S.
    Glass, Elizabeth M.
    Chivian, Dylan
    Gunter, Dan
    Weston, David J.
    Allen, Benjamin H.
    Baumohl, Jason
    Best, Aaron A.
    Bowen, Ben
    Brenner, Steven E.
    Bun, Christopher C.
    Chandonia, John-Marc
    Chia, Jer-Ming
    Colasanti, Ric
    Conrad, Neal
    Davis, James J.
    Davison, Brian H.
    DeJongh, Matthew
    Devoid, Scott
    Dietrich, Emily
    Dubchak, Inna
    Edirisinghe, Janaka N.
    Fang, Gang
    Faria, Jose P.
    Frybarger, Paul M.
    Gerlach, Wolfgang
    Gerstein, Mark
    Greiner, Annette
    Gurtowski, James
    Haun, Holly L.
    He, Fei
    Jain, Rashmi
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (07) : 566 - 569
  • [5] The RAST server: Rapid annotations using subsystems technology
    Aziz, Ramy K.
    Bartels, Daniela
    Best, Aaron A.
    DeJongh, Matthew
    Disz, Terrence
    Edwards, Robert A.
    Formsma, Kevin
    Gerdes, Svetlana
    Glass, Elizabeth M.
    Kubal, Michael
    Meyer, Folker
    Olsen, Gary J.
    Olson, Robert
    Osterman, Andrei L.
    Overbeek, Ross A.
    McNeil, Leslie K.
    Paarmann, Daniel
    Paczian, Tobias
    Parrello, Bruce
    Pusch, Gordon D.
    Reich, Claudia
    Stevens, Rick
    Vassieva, Olga
    Vonstein, Veronika
    Wilke, Andreas
    Zagnitko, Olga
    [J]. BMC GENOMICS, 2008, 9 (1)
  • [6] Barabasi A.-L., 2015, Network science
  • [7] Basler Georg, 2008, Genome Inform, V20, P135
  • [8] Single Cell Genomics of Uncultured, Health-Associated Tannerella BU063 (Oral Taxon 286) and Comparison to the Closely Related Pathogen Tannerella forsythia
    Beall, Clifford J.
    Campbell, Alisha G.
    Dayeh, Daniel M.
    Griffen, Ann L.
    Podar, Mircea
    Leys, Eugene J.
    [J]. PLOS ONE, 2014, 9 (02):
  • [9] Quorum Sensing Modulates the Epibiotic-Parasitic Relationship Between Actinomyces odontolyticus and Its Saccharibacteria epibiont, a Nanosynbacter lyticus Strain, TM7x
    Bedree, Joseph K.
    Bor, Batbileg
    Cen, Lujia
    Edlund, Anna
    Lux, Renate
    McLean, Jeffrey S.
    Shi, Wenyuan
    He, Xuesong
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [10] Bernstein D., 2019, BIOSYNTHETIC NETWORK