Wiretap Channels: Nonasymptotic Fundamental Limits

被引:93
作者
Yang, Wei [1 ]
Schaefer, Rafael F. [2 ]
Poor, H. Vincent [3 ]
机构
[1] Qualcomm Technol Inc, San Diego, CA 92121 USA
[2] Tech Univ Berlin, Informat Theory & Applicat Chair, D-10587 Berlin, Germany
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Finite blocklength; information-theoretic security; privacy amplification; semantic security; wiretap channel; INFORMATION SPECTRUM APPROACH; SECRET KEY AGREEMENT; STRONG CONVERSE; PROBABILITY; CAPACITY; IDENTIFICATION; APPROXIMATION; INEQUALITIES; ERROR;
D O I
10.1109/TIT.2019.2904500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the maximal secret communication rate over a wiretap channel subject to reliability and secrecy constraints at a given blocklength. New achievability and converse bounds are derived, which are uniformly tighter than existing bounds, and lead to the tightest bounds on the second-order coding rate for discrete memoryless and Gaussian wiretap channels. The exact second-order coding rate is established for semi-deterministic wiretap channels, which characterizes the optimal tradeoff between reliability and secrecy in the finite-blocklength regime. Underlying our achievability bounds are two new privacy amplification results, which not only refine the classic privacy amplification results, but also achieve secrecy under the stronger semantic-security metric.
引用
收藏
页码:4069 / 4093
页数:25
相关论文
共 64 条
[1]   Strong converse for identification via quantum channels [J].
Ahlswede, R ;
Winter, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :569-579
[2]   Common randomness in information theory and cryptography - Part II: CR capacity [J].
Ahlswede, R ;
Csiszar, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :225-240
[3]  
[Anonymous], 2011, INFORM THEORY CODING, DOI DOI 10.1017/CBO9780511921889
[4]  
[Anonymous], 2011, Physical-Layer Security:From Information Theory to Security Engineering, DOI DOI 10.1017/CBO9780511977985
[5]  
[Anonymous], 2005, THESIS
[6]  
Bellare M., 2012, POLYNOMIAL TIME SEMA
[7]  
Bellare M., 2012, LECT NOTES COMPUT SC, V7417, P311
[8]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[9]  
Boyd Stephen P., 2014, Convex Optimization
[10]  
CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8