Generalized axially symmetric potentials with distributional boundary values

被引:6
作者
Wittsten, Jens [1 ]
机构
[1] Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2015年 / 139卷 / 08期
基金
日本学术振兴会;
关键词
Generalized axially symmetric potential; Poisson integral; Weighted Laplace operator; Poisson kernel; Weighted space of distributions; Hyperbolic Brownian motion; HYPERBOLIC HALF-PLANE; HITTING DISTRIBUTIONS; UNIT DISC; KERNELS;
D O I
10.1016/j.bulsci.2015.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a counterpart of the classical Poisson integral for a family of weighted Laplace differential equations in Euclidean half space, solutions of which are known as generalized axially symmetric potentials. These potentials appear naturally in the study of hyperbolic Brownian motion with drift. We determine the optimal class of tempered distributions which by means of the so-called l'-convolution can be extended to generalized axially symmetric potentials. In the process, the associated Dirichlet boundary value problem is solved, and we obtain sharp order relations for the asymptotic growth of these extensions. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:892 / 922
页数:31
相关论文
共 31 条
  • [1] S′-convolvability with the Poisson kernel in the Euclidean case and the product domain case
    Alvarez, J
    Guzmán-Partida, M
    Skórnik, U
    [J]. STUDIA MATHEMATICA, 2003, 156 (02) : 143 - 163
  • [2] Harmonic extensions of distributions
    Alvarez, Josefina
    Guzman-Partida, Martha
    Perez-Esteva, Salvador
    [J]. MATHEMATISCHE NACHRICHTEN, 2007, 280 (13-14) : 1443 - 1466
  • [3] Andrews George E., 1999, ENCY MATH APPL, V71
  • [4] [Anonymous], 1955, HARMONIC ANAL PROBAB
  • [5] [Anonymous], 2004, An Introduction to Harmonic Analysis, DOI DOI 10.1017/CBO9781139165372
  • [6] Calderon's inverse conductivity problem in the plane
    Astala, Kari
    Paivarinta, Lassi
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (01) : 265 - 299
  • [7] Baldi P, 2001, REV MAT IBEROAM, V17, P587
  • [8] Stable laws arising from hitting distributions of processes on homogeneous trees and the hyperbolic half-plane
    Baldi, P
    Casadio Tarabusi, E
    Figà-Talamanca, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2001, 197 (02) : 257 - 273
  • [9] Weighted integrability of polyharmonic functions
    Borichev, Alexander
    Hedenmalm, Haakan
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 464 - 505
  • [10] Hitting distributions of geometric Brownian motion
    Byczkowski, T
    Ryznar, M
    [J]. STUDIA MATHEMATICA, 2006, 173 (01) : 19 - 38