Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries

被引:262
|
作者
Wang, Yesheng [1 ]
Li, Yanyan [1 ]
Qiu, Zhipeng [1 ]
Wu, Xiaozhong [1 ]
Zhou, Pengfei [1 ]
Zhou, Tong [2 ]
Zhao, Jinping [1 ]
Miao, Zhichao [1 ]
Zhou, Jin [1 ]
Zhuo, Shuping [1 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Peoples R China
[2] Shandong Univ Technol, Sch Phys & Optoelect Engn, Lab Funct Mol & Mat, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
2-DIMENSIONAL TITANIUM CARBIDE; BINDER-FREE ANODE; ELECTROCHEMICAL PROPERTIES; FE3O4; NANOPARTICLES; CARBON; PERFORMANCE; COMPOSITES; STORAGE; TI3C2; NANOCOMPOSITE;
D O I
10.1039/c8ta00122g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The volumetric capacity of lithium-ion batteries is becoming an increasingly important parameter restricting their practical applications in limited space, such as in portable electronic products and electric vehicles. Therefore, novel electrode materials with high volumetric capacities are urgently desirable. Aiming to pursue such kind of electrode materials, a new Fe3O4@Ti3C2 MXene hybrid is fabricated through a simple ultrasonication of Ti3C2 MXene and Fe3O4 nanoparticles. Multi-layered Ti3C2 MXene in the prepared hybrids acts as a superior host to load Fe3O4 nanoparticles due to its open two dimensional structure, favorable electrical conductivity and low Li+ diffusion barrier. X-ray diffraction and scanning electron microscopy analysis show that the Ti3C2 MXene could be homogeneously covered by Fe3O4 nanoparticles at a mass ratio of 5 : 2. As an anode material, the Fe3O4@Ti3C2-2:5 hybrid exhibits high reversible capacities of 747.4 mA h g(-1) at 1C after 1000 cycles and 278.3 mA h g(-1) at 5C after 800 cycles, which indicate its long cycle lifetime and excellent stability. More importantly, the hybrid material possesses an outstanding volumetric capacity up to 2038 mA h cm(-3) at 1C due to the high compact density of the electrode of the prepared hybrid. This study provides further insight into the application of transition metal oxides@MXene hybrids as high volumetric performance anode electrodes for lithium-ion batteries.
引用
收藏
页码:11189 / 11197
页数:9
相关论文
共 50 条
  • [21] α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries
    Lin, Yong-Mao
    Abel, Paul R.
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (22): : 2885 - 2891
  • [22] A novel Fe3O4-SnO2-graphene ternary nanocomposite as an anode material for lithium-ion batteries
    Lian, Peichao
    Liang, Shuzhao
    Zhu, Xuefeng
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2011, 58 : 81 - 88
  • [23] Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries
    Noerochim, L.
    Indra, M. A. T.
    Purwaningsih, H.
    Subhan, A.
    5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS SCIENCES AND TECHNOLOGY (ICAMST 2017), 2018, 367
  • [24] High Rate Capability of Fe/FeO/Fe3O4 Composite as Anode Material for Lithium-Ion Batteries
    Shi, L.
    He, Y. D.
    Xia, X. H.
    Jian, Z. M.
    Liu, H. B.
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2010, 7 (03) : 721 - 726
  • [25] High rate capability of Fe/FeO/Fe3O4 composite as anode material for lithium-ion batteries
    L. Shi
    Y. D. He
    X. H. Xia
    Z. M. Jian
    H. B. Liu
    Journal of the Iranian Chemical Society, 2010, 7 : 721 - 726
  • [26] Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries
    Du, Jun
    Ding, Yu
    Guo, Liangui
    Wang, Li
    Fu, Zhengbing
    Qin, Caiqin
    Wang, Feng
    Tao, Xinyong
    APPLIED SURFACE SCIENCE, 2017, 425 : 164 - 169
  • [27] Metal–organic framework derived Fe3O4/C/rGO composite as an anode material in lithium-ion batteries
    Rong Yang
    Yumeng Wang
    Qijiu Deng
    Peng Hui
    Zongbin Luo
    Yinglin Yan
    Liangliang Wang
    Ionics, 2021, 27 : 3281 - 3289
  • [28] A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries
    Wang, Peng
    Gao, Mingxia
    Pan, Hongge
    Zhang, Jialei
    Liang, Chu
    Wang, Junhua
    Zhou, Pei
    Liu, Yongfeng
    JOURNAL OF POWER SOURCES, 2013, 239 : 466 - 474
  • [29] High capacity SiAl/C anode material for lithium-ion batteries
    Wen, Zhong-Sheng
    Xie, Xiao-Hua
    Wang, Ke
    Yang, Jun
    Xie, Jing-Ying
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2005, 20 (01): : 139 - 143
  • [30] High capacity SiAl/C anode material for lithium-ion batteries
    Wen, ZS
    Xie, XH
    Wang, K
    Yang, J
    Xie, JY
    JOURNAL OF INORGANIC MATERIALS, 2005, 20 (01) : 139 - 143