Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems

被引:115
作者
Modiri, Arshia [1 ]
Mobayen, Saleh [1 ,2 ]
机构
[1] Univ Zanjan, Fac Engn, Dept Elect Engn, Adv Control Syst Lab, Zanjan 3879145371, Iran
[2] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
关键词
Finite-time synchronization; Chaotic system; Fractional-order system; Adaptive control; Sliding surface; UNKNOWN-PARAMETERS; DESIGN; CALCULUS;
D O I
10.1016/j.isatra.2020.05.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main goal in this article is synchronization of fractional-order uncertain chaotic systems in the finite time. For this aim, a terminal sliding mode controller with fractional sliding surface is employed to synchronize the states of two different fractional order chaotic systems with parameter uncertainties and external disturbances. This approach is robust when the effects of perturbations are derived into account. A fractional-order adaptive terminal sliding mode controller is developed to estimate the upper bounds of perturbations. Both suggested control laws are useful for fractionalorder uncertain chaotic master-slave systems. Demonstrative simulation outcomes for Lorenz and Chen fractional-order systems with model perturbations and the engineering application on message telecommunication indicate the efficiency and usefulness of the recommended design. (C) 2020 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 50
页数:18
相关论文
共 62 条
[1]   Robust Timing and Frequency Synchronization for OFDM Systems [J].
Abdzadeh-Ziabari, Hamed ;
Shayesteh, Mahrokh G. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (08) :3646-3656
[2]   Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems [J].
Aghababa, Mohammad Pourmahmood .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (10) :1744-1756
[3]   Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :247-261
[4]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[5]  
[Anonymous], 2016, 2016 8 IEEE LAT AM C
[6]   Adaptive synchronization of new fractional-order chaotic systems with fractional adaption laws based on risk analysis [J].
Behinfaraz, Reza ;
Ghaemi, Sehraneh ;
Khanmohammadi, Sohrab .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) :1772-1785
[7]  
Ben Smida Mouna, 2018, Advances in System Dynamics and Control, P58, DOI [10.4018/978-1-5225-4077-9.ch003, DOI 10.4018/978-1-5225-4077-9.CH003]
[8]   Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems [J].
Bigdeli, Nooshin ;
Ziazi, Hossein Alinia .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01) :160-183
[9]   A simple Lorenz circuit and its radio frequency implementation [J].
Blakely, Jonathan N. ;
Eskridge, Michael B. ;
Corron, Ned J. .
CHAOS, 2007, 17 (02)
[10]  
Bouzeriba A., 2018, ADV SYNCHRONIZATION, P190, DOI [10.4018/978-1- 5225-5418-9.ch007, DOI 10.4018/978-1-5225-5418-9.CH007]