Semiconductor laser device with quantum dots for transmission in the near infrared

被引:0
作者
Gonzalez-Fernandez, J. V. [1 ]
Diaz de Leon-Zapata, R. [2 ]
Lara-Velazquez, I. [2 ]
Ortega-Gallegos, J. [3 ]
机构
[1] Unidad Especializada Energias Renovables Tecnol N, Blvd Revoluc & Calzada Cuauhtemoc S-N, Torreon 27000, Coahuila, Mexico
[2] Tecnol Nacl Mexico IT San Luis Potosi, Av Tecnol S-N, Soledad Graciano Sanchez 78437, SLP, Mexico
[3] Univ Autonoma San Luis Potosi, Inst Invest Comunicac Opt, Av Karakorum 1470,Lomas 4a Secc, San Luis Potosi 78210, SLP, Mexico
关键词
Quantum dots; semiconductor devices; molecular beam epitaxy; laser; GROWTH;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work the fabrication of III-V semiconductor laser device with separate confinement is reported. The heterostructure was grown by molecular beam epitaxy technique and it was characterized by optical, morphological and electrical techniques such as photoluminescence, scanning tunneling effect, electroluminescence, current-voltage and current-power relations, respectively. The electronic confinement was carried out by sandwiching the active area with InGaAs quantum well with an appropriated Indium composition that allows a structural coupling between quantum wells and self-assembled InAs quantum dots decreasing dislocations that could commit the device quality. Our aim is to obtain the laser emission in the lower absorption windows for optical fiber telecommunications systems located in the near-infrared.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 17 条
  • [1] Quantum dot lasers: breakthrough in optoelectronics
    Bimberg, D
    Grundmann, M
    Heinrichsdorff, F
    Ledentsov, NN
    Ustinov, VM
    Zhukov, AE
    Kovsh, AR
    Maximov, MV
    Shernyakov, YM
    Volovik, BV
    Tsatsul'nikov, AF
    Kop'ev, PS
    Alferov, ZI
    [J]. THIN SOLID FILMS, 2000, 367 (1-2) : 235 - 249
  • [2] Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/nphoton.2016.21, 10.1038/NPHOTON.2016.21]
  • [3] Coupling quantum dots to optical fiber: Low pump threshold laser in the red with a near top hat beam profile
    Cheng, H.
    Mironov, A. E.
    Ni, J. H.
    Yang, H. J.
    Chen, W. W.
    Dai, Z.
    Dragic, P. D.
    Dong, J.
    Park, S-J.
    Eden, J. G.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (08)
  • [4] FILM DEPOSITION BY MOLECULAR-BEAM TECHNIQUES
    CHO, AY
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1971, 8 (05): : S31 - &
  • [5] DUTTON HJR, 1998, ITSO NETWK SERIES, P3
  • [6] Gonzalez-Fernandez J. V., 2009, IEEEXPO 2009 3 C U G
  • [7] III-V compound semiconductors: Growth and structures
    Kuech, Thomas F.
    [J]. PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2016, 62 (02) : 352 - 370
  • [8] Quantum-dot heterostructure lasers
    Ledentsov, NN
    Grundmann, M
    Heinrichsdorff, F
    Bimberg, D
    Ustinov, VM
    Zhukov, AE
    Maximov, MV
    Alferov, ZI
    Lott, JA
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (03) : 439 - 451
  • [9] High performance continuous wave 1.3 μm quantum dot lasers on silicon
    Liu, Alan Y.
    Zhang, Chong
    Norman, Justin
    Snyder, Andrew
    Lubyshev, Dmitri
    Fastenau, Joel M.
    Liu, Amy W. K.
    Gossard, Arthur C.
    Bowers, John E.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (04)
  • [10] Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer
    Liu, HY
    Sellers, IR
    Badcock, TJ
    Mowbray, DJ
    Skolnick, MS
    Groom, KM
    Gutiérrez, M
    Hopkinson, M
    Ng, JS
    David, JPR
    Beanland, R
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (05) : 704 - 706