Modelling functional additive quantile regression using support vector machines approach

被引:4
作者
Crambes, Christophe [1 ]
Gannoun, Ali [1 ]
Henchiri, Yousri [1 ]
机构
[1] Univ Montpellier 2, Equipe Probabilites & Stat, UMR CNRS 5149, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
关键词
MSC; 62G08; 68Q32; 62G20; support vector machines; ordinary backfitting procedure; conditional quantiles; iterative reweighted least squares; reproducing kernel Hilbert space; functional covariates; additive model; NONPARAMETRIC-ESTIMATION; CONDITIONAL QUANTILES; CONSISTENCY; PREDICTION;
D O I
10.1080/10485252.2014.941365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work deals with conditional quantiles estimation when several functional covariates are involved, via a support vector machines nonparametric methodology. We establish weak consistency of this estimator. To fit the additive components, we use an ordinary backfitting procedure combined with an iterative reweighted least-squares procedure to solve the penalised minimisation problem. This procedure makes it possible to derive a split sample method for choosing the hyper-parameters of the model. The performances of the proposed technique, in terms of forecast accuracy, are evaluated through simulation and a real dataset study.
引用
收藏
页码:639 / 668
页数:30
相关论文
共 48 条
[1]   Maximum ozone concentration forecasting by functional non-parametric approaches [J].
Aneiros-Pérez, G ;
Cardot, H ;
Estévez-Pérez, G ;
Vieu, P .
ENVIRONMETRICS, 2004, 15 (07) :675-685
[2]  
[Anonymous], 2012, J ROY STAT SOC B, DOI DOI 10.1111/j.1467-9868.2011.01008.x
[3]  
Berlinet A., 2004, REPRODUCING KERNEL H, DOI 10.1007/978-1-4419-9096-9
[4]   Functional classification in Hilbert spaces [J].
Biau, G ;
Bunea, F ;
Wegkamp, MH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2163-2172
[5]   Quantile regression when the covariates are functions [J].
Cardot, H ;
Crambes, C ;
Sarda, P .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) :841-856
[6]   Functional linear model [J].
Cardot, H ;
Ferraty, F ;
Sarda, P .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :11-22
[7]  
Cardot H., 2007, STAT METHODS BIOSTAT, P509
[8]   GLOBAL NONPARAMETRIC-ESTIMATION OF CONDITIONAL QUANTILE FUNCTIONS AND THEIR DERIVATIVES [J].
CHAUDHURI, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (02) :246-269
[9]   Consistency of support vector machines using additive kernels for additive models [J].
Christmann, Andreas ;
Hable, Robert .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) :854-873
[10]   Support vector machine quantile regression approach for functional data: Simulation and application studies [J].
Crambes, Christophe ;
Gannoun, Ali ;
Henchiri, Yousri .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 :50-68