Sulfidization of lepidocrocite and its effect on uranium phase distribution and reduction

被引:14
作者
Alexandratos, Vasso G. [1 ]
Behrends, Thilo [1 ]
Van Cappellen, Philippe [2 ]
机构
[1] Univ Utrecht, Fac Geosci, NL-3508 TA Utrecht, Netherlands
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
RAY-ABSORPTION SPECTROSCOPY; SULFIDE SINGLE-CRYSTALS; SURFACE COMPLEXATION; HYDROGEN-SULFIDE; ELECTRON-MICROSCOPE; METAL RETENTION; IRON SULFIDE; FERROUS IRON; ADSORPTION; OXIDATION;
D O I
10.1016/j.gca.2014.08.009
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sulfidization of iron oxyhydroxides can be accompanied by a release of adsorbed uranium, thus enhancing the mobility of uranium in systems undergoing a shift in redox conditions. We investigated the phase distribution and redox state of uranium in batch experiments, in which lepidocrocite with adsorbed U(VI) was reacted with sulfide. The amount of added sulfide was varied in the experiments performed, at pH 8 and ionic strength of 0.1 M. Sulfide, when not added in excess, was removed from solution within less than 1 h of reaction time. Consumption of dissolved sulfide was accompanied by reduction of Fe(III) and formation of iron sulfide. Each addition of sulfide led to an instantaneous release of uranium into solution. This release is most likely caused by the exchange of hydroxide groups at the lepidocrocite surface by thiol groups which have a lower tendency to bind uranium. Along with the consumption of dissolved sulfide, part of the released uranium became reassociated with the solid phase. This can be explained by a reversal of the ligand exchange process at the solid surfaces. However, steady state concentrations of dissolved uranium remained higher than before sulfide addition, indicating that the product of lepidocrocite sulfidization has a lower affinity for uranium than the starting material. Reduction of U(VI) also contributed to the transfer of dissolved uranium back to the solid phase. X-ray absorption spectroscopy revealed that reduction of U(VI) occurred in all experiments. The extent of U(VI) reduction depended on sulfide addition, however, formation of UO2 occurred within a period of 48 h only when sulfide was added in excess. This suggests that the presence of dissolved sulfide is a prerequisite for fast reduction of U(VI) and formation of UO2. This would imply that the fast reaction of lepidocrocite with sulfide outcompetes reduction of U(VI) and, by this, kinetically inhibits the thermodynamically more favorable reduction of U(VI) to uraninite. Our results demonstrate that the transition from oxic to sulfidic conditions can lead to intermittent mobilization of uranium which is not expected based on equilibrium thermodynamics. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:570 / 586
页数:17
相关论文
共 90 条
[1]  
AFONSO MD, 1992, LANGMUIR, V8, P1671
[2]   Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks [J].
Anderson, C ;
Pedersen, K ;
Jakobsson, AM .
GEOMICROBIOLOGY JOURNAL, 2006, 23 (01) :15-29
[3]   CONCENTRATION, OXIDATION-STATE, AND PARTICULATE FLUX OF URANIUM IN THE BLACK-SEA [J].
ANDERSON, RF ;
FLEISHER, MQ ;
LEHURAY, AP .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (09) :2215-2224
[4]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[5]   Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J].
Appelo, CAJ ;
Van der Weiden, MJJ ;
Tournassat, C ;
Charlet, L .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (14) :3096-3103
[6]   Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements [J].
Bargar, JR ;
Reitmeyer, R ;
Lenhart, JJ ;
Davis, JA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2000, 64 (16) :2737-2749
[7]   Transformation of hematite into magnetite during dissimilatory iron reduction - Conditions and mechanisms [J].
Behrends, T. ;
Van Cappellen, P. .
GEOMICROBIOLOGY JOURNAL, 2007, 24 (05) :403-416
[8]   INTERACTIONS BETWEEN ARSENIC AND IRON OXYHYDROXIDES IN LACUSTRINE SEDIMENTS [J].
BELZILE, N ;
TESSIER, A .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1990, 54 (01) :103-109
[9]  
Berner RA., 1980, Early Diagenesis: A Theoretical Approach, DOI [10.1515/9780691209401, DOI 10.1515/9780691209401]
[10]   Role of iron in controlling speciation and mobilization of arsenic in subsurface environment [J].
Bose, P ;
Sharma, A .
WATER RESEARCH, 2002, 36 (19) :4916-4926