Increasing Agmatine Production in Escherichia coli through Metabolic Engineering

被引:9
作者
Xu, Aging [1 ]
Zhang, Lirong [2 ]
机构
[1] Hebei Agr Univ, Coll Life Sci, Baoding 071000, Peoples R China
[2] Hebei Agr Univ, Coll Plant Protect, Baoding 071000, Peoples R China
基金
中国国家自然科学基金;
关键词
Escherichia coli; agmatine production; promoter substitution; gene overexpression; batch and fed-batch fermentation; ARGININE; TRANSCRIPTION; BIOSYNTHESIS; PATHWAYS; PROMOTER; CARBON; GENES; PCR;
D O I
10.1021/acs.jafc.9b03038
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
In this study, to obtain higher agmatine yields using the previously developed E. coli strain AUX4 (JM109 Delta speC Delta speF Delta speB Delta argR), the genes encoding glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), phosphoenolpyruvate carboxylase (ppc), aspartate aminotransferase (aspC), transhydrogenase (pntAB), and biosynthetic arginine decarboxylase (speA) were sequentially overexpressed by replacing their native promoters with the heterologous strong trp, core-trc, or 5Ptacs promoters to generate the plasmid-free E. coli strain AUX11. The fermentation results obtained using a 3-L bioreactor showed that AUX11 produced 2.93 g L-1 agmatine with the yield of 0.29 g agmatine g(-1) glucose in the batch fermentation, and the fed-batch fermentation of AUX11 allowed the production of 40.43 g L-1 agmatine with the productivity of 1.26 g L-1 h(-1) agmatine. The results showed that the engineered E. coli strain AUX11 can be used for the industrial fermentative production of agmatine.
引用
收藏
页码:7908 / 7915
页数:8
相关论文
共 25 条
[1]   Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli [J].
Bastian, Sabine ;
Liu, Xiang ;
Meyerowitz, Joseph T. ;
Snow, Christopher D. ;
Chen, Mike M. Y. ;
Arnold, Frances H. .
METABOLIC ENGINEERING, 2011, 13 (03) :345-352
[2]   Promoter engineering: Recent advances in controlling transcription at the most fundamental level [J].
Blazeck, John ;
Alper, Hal S. .
BIOTECHNOLOGY JOURNAL, 2013, 8 (01) :46-+
[3]   BIOSYNTHESIS AND METABOLISM OF ARGININE IN BACTERIA [J].
CUNIN, R ;
GLANSDORFF, N ;
PIERARD, A ;
STALON, V .
MICROBIOLOGICAL REVIEWS, 1986, 50 (03) :314-352
[4]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[5]  
DEBOER HA, 1983, P NATL ACAD SCI-BIOL, V80, P21
[6]   THE CLONING AND SEQUENCE-ANALYSIS OF THE ASPC AND TYRB GENES FROM ESCHERICHIA-COLI-K12 - COMPARISON OF THE PRIMARY STRUCTURES OF THE ASPARTATE-AMINOTRANSFERASE AND AROMATIC AMINOTRANSFERASE OF ESCHERICHIA-COLI WITH THOSE OF THE PIG ASPARTATE-AMINOTRANSFERASE ISOENZYMESN [J].
FOTHERINGHAM, IG ;
DACEY, SA ;
TAYLOR, PP ;
SMITH, TJ ;
HUNTER, MG ;
FINLAY, ME ;
PRIMROSE, SB ;
PARKER, DM ;
EDWARDS, RM .
BIOCHEMICAL JOURNAL, 1986, 234 (03) :593-604
[7]   Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis [J].
Ginesy, Mireille ;
Belotserkovsky, Jaroslav ;
Enman, Josefine ;
Isaksson, Leif ;
Rova, Ulrika .
MICROBIAL CELL FACTORIES, 2015, 14
[8]   WHY DOES ESCHERICHIA-COLI HAVE 2 PRIMARY PATHWAYS FOR SYNTHESIS OF GLUTAMATE [J].
HELLING, RB .
JOURNAL OF BACTERIOLOGY, 1994, 176 (15) :4664-4668
[9]   Synthetic biology for synthetic chemistry [J].
Keasling, Jay D. .
ACS CHEMICAL BIOLOGY, 2008, 3 (01) :64-76
[10]   Safety and Efficacy of Dietary Agmatine Sulfate in Lumbar Disc-associated Radiculopathy. An Open-label, Dose-escalating Study Followed by a Randomized, Double-blind, Placebo-controlled Trial [J].
Keynan, Ory ;
Mirovsky, Yigal ;
Dekel, Samuel ;
Gilad, Varda H. ;
Gilad, Gad M. .
PAIN MEDICINE, 2010, 11 (03) :356-368